Democratizing Advanced Attribution Analyses of Generative Language Models with the Inseq Toolkit
Saved in:
| Title: | Democratizing Advanced Attribution Analyses of Generative Language Models with the Inseq Toolkit |
|---|---|
| Authors: | Sarti, Gabriele, Feldhus, Nils, Qi, Jirui, Nissim, Malvina, Bisazza, Arianna |
| Publisher Information: | CEUR Workshop Proceedings (CEUR-WS.org), 2024. |
| Publication Year: | 2024 |
| Subject Terms: | Feature Attribution, Generative Language Models, Python Toolkit, Natural Language Processing |
| Description: | Inseq1 is a recent toolkit providing an intuitive and optimized interface to conduct feature attribution analyses of generative language models. In this work, we present the latest improvements to the library, including efforts to simplify the attribution of large language models on consumer hardware, additional attribution approaches, and a new client command to detect and attribute context usage in language model generations. We showcase an online demo using Inseq as an attribution backbone for context reliance analysis, and we highlight interesting contextual patterns in language model generations. Ultimately, this release furthers Inseq’s mission of centralizing good interpretability practices and enabling fair and reproducible model evaluations. |
| Document Type: | Conference object |
| Language: | English |
| Access URL: | https://research.rug.nl/en/publications/f719d93e-ca37-4965-b935-69bc53a48a4f https://hdl.handle.net/11370/f719d93e-ca37-4965-b935-69bc53a48a4f |
| Rights: | CC BY |
| Accession Number: | edsair.dris...01423..3f1b08ba700891a86a4a076231d8432f |
| Database: | OpenAIRE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://explore.openaire.eu/search/publication?articleId=dris___01423%3A%3A3f1b08ba700891a86a4a076231d8432f Name: EDS - OpenAIRE (s4221598) Category: fullText Text: View record at OpenAIRE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Sarti%20G Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsair DbLabel: OpenAIRE An: edsair.dris...01423..3f1b08ba700891a86a4a076231d8432f RelevancyScore: 929 AccessLevel: 3 PubType: Conference PubTypeId: conference PreciseRelevancyScore: 929.415405273438 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Democratizing Advanced Attribution Analyses of Generative Language Models with the Inseq Toolkit – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Sarti%2C+Gabriele%22">Sarti, Gabriele</searchLink><br /><searchLink fieldCode="AR" term="%22Feldhus%2C+Nils%22">Feldhus, Nils</searchLink><br /><searchLink fieldCode="AR" term="%22Qi%2C+Jirui%22">Qi, Jirui</searchLink><br /><searchLink fieldCode="AR" term="%22Nissim%2C+Malvina%22">Nissim, Malvina</searchLink><br /><searchLink fieldCode="AR" term="%22Bisazza%2C+Arianna%22">Bisazza, Arianna</searchLink> – Name: Publisher Label: Publisher Information Group: PubInfo Data: CEUR Workshop Proceedings (CEUR-WS.org), 2024. – Name: DatePubCY Label: Publication Year Group: Date Data: 2024 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Feature+Attribution%22">Feature Attribution</searchLink><br /><searchLink fieldCode="DE" term="%22Generative+Language+Models%22">Generative Language Models</searchLink><br /><searchLink fieldCode="DE" term="%22Python+Toolkit%22">Python Toolkit</searchLink><br /><searchLink fieldCode="DE" term="%22Natural+Language+Processing%22">Natural Language Processing</searchLink> – Name: Abstract Label: Description Group: Ab Data: Inseq1 is a recent toolkit providing an intuitive and optimized interface to conduct feature attribution analyses of generative language models. In this work, we present the latest improvements to the library, including efforts to simplify the attribution of large language models on consumer hardware, additional attribution approaches, and a new client command to detect and attribute context usage in language model generations. We showcase an online demo using Inseq as an attribution backbone for context reliance analysis, and we highlight interesting contextual patterns in language model generations. Ultimately, this release furthers Inseq’s mission of centralizing good interpretability practices and enabling fair and reproducible model evaluations. – Name: TypeDocument Label: Document Type Group: TypDoc Data: Conference object – Name: Language Label: Language Group: Lang Data: English – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://research.rug.nl/en/publications/f719d93e-ca37-4965-b935-69bc53a48a4f" linkWindow="_blank">https://research.rug.nl/en/publications/f719d93e-ca37-4965-b935-69bc53a48a4f</link><br /><link linkTarget="URL" linkTerm="https://hdl.handle.net/11370/f719d93e-ca37-4965-b935-69bc53a48a4f" linkWindow="_blank">https://hdl.handle.net/11370/f719d93e-ca37-4965-b935-69bc53a48a4f</link> – Name: Copyright Label: Rights Group: Cpyrght Data: CC BY – Name: AN Label: Accession Number Group: ID Data: edsair.dris...01423..3f1b08ba700891a86a4a076231d8432f |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.dris...01423..3f1b08ba700891a86a4a076231d8432f |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: English Subjects: – SubjectFull: Feature Attribution Type: general – SubjectFull: Generative Language Models Type: general – SubjectFull: Python Toolkit Type: general – SubjectFull: Natural Language Processing Type: general Titles: – TitleFull: Democratizing Advanced Attribution Analyses of Generative Language Models with the Inseq Toolkit Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Sarti, Gabriele – PersonEntity: Name: NameFull: Feldhus, Nils – PersonEntity: Name: NameFull: Qi, Jirui – PersonEntity: Name: NameFull: Nissim, Malvina – PersonEntity: Name: NameFull: Bisazza, Arianna IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2024 Identifiers: – Type: issn-locals Value: edsair – Type: issn-locals Value: edsairFT |
| ResultId | 1 |
Nájsť tento článok vo Web of Science