Characterization of Strict Positive Definiteness on products of complex spheres: Characterization of strict positive definiteness on products of complex spheres

Uložené v:
Podrobná bibliografia
Názov: Characterization of Strict Positive Definiteness on products of complex spheres: Characterization of strict positive definiteness on products of complex spheres
Autori: Mario H. Castro, Eugenio Massa, Ana Paula Peron
Zdroj: Positivity. 23:853-874
Publication Status: Preprint
Informácie o vydavateľovi: Springer Science and Business Media LLC, 2019.
Rok vydania: 2019
Predmety: Fourier series in special orthogonal functions (Legendre polynomials, Walsh functions, etc.), 42A82, 42C10, Mathematics - Classical Analysis and ODEs, product of complex spheres, generalized Zernike polynomial, Classical Analysis and ODEs (math.CA), FOS: Mathematics, Positive definite functions in one variable harmonic analysis, strictly positive definite functions, Positive definite functions on groups, semigroups, etc
Popis: In this paper we consider Positive Definite functions on products $��_{2q}\times��_{2p}$ of complex spheres, and we obtain a condition, in terms of the coefficients in their disc polynomial expansions, which is necessary and sufficient for the function to be Strictly Positive Definite. The result includes also the more delicate cases in which $p$ and/or $q$ can be $1$ or $\infty$. The condition we obtain states that a suitable set in $\mathbb{Z}^2$, containing the indexes of the strictly positive coefficients in the expansion, must intersect every product of arithmetic progressions.
Druh dokumentu: Article
Other literature type
Popis súboru: application/xml
Jazyk: English
ISSN: 1572-9281
1385-1292
DOI: 10.1007/s11117-018-00641-5
DOI: 10.48550/arxiv.1803.06264
Prístupová URL adresa: http://arxiv.org/pdf/1803.06264
http://arxiv.org/abs/1803.06264
https://zbmath.org/7118383
https://doi.org/10.1007/s11117-018-00641-5
http://ui.adsabs.harvard.edu/abs/2018arXiv180306264C/abstract
https://arxiv.org/abs/1803.06264
https://arxiv.org/pdf/1803.06264.pdf
https://link.springer.com/article/10.1007/s11117-018-00641-5
Rights: Springer TDM
arXiv Non-Exclusive Distribution
Prístupové číslo: edsair.doi.dedup.....fba7cdf0147c69de109f49e5dd84fb9d
Databáza: OpenAIRE
Popis
Abstrakt:In this paper we consider Positive Definite functions on products $��_{2q}\times��_{2p}$ of complex spheres, and we obtain a condition, in terms of the coefficients in their disc polynomial expansions, which is necessary and sufficient for the function to be Strictly Positive Definite. The result includes also the more delicate cases in which $p$ and/or $q$ can be $1$ or $\infty$. The condition we obtain states that a suitable set in $\mathbb{Z}^2$, containing the indexes of the strictly positive coefficients in the expansion, must intersect every product of arithmetic progressions.
ISSN:15729281
13851292
DOI:10.1007/s11117-018-00641-5