BETA CANTOR SERIES EXPANSION AND ADMISSIBLE SEQUENCES

Uloženo v:
Podrobná bibliografie
Název: BETA CANTOR SERIES EXPANSION AND ADMISSIBLE SEQUENCES
Autoři: Jonathan Caalim, Shiela Demegillo
Zdroj: Acta Polytechnica, Vol 60, Iss 3, Pp 214-224 (2020)
Informace o vydavateli: Czech Technical University in Prague - Central Library, 2020.
Rok vydání: 2020
Témata: beta expansion, q-cantor series expansion, numeration system, admissibility, Automata Theory and Formal Languages, 01 natural sciences, Computational Complexity and Algorithmic Information Theory, FOS: Mathematics, Series (stratigraphy), Genetics, Alphabet, 0101 mathematics, Biology, Mathematical Physics, BETA (programming language), Regular Expressions, Paleontology, Linguistics, Discrete mathematics, Engineering (General). Civil engineering (General), Computer science, FOS: Philosophy, ethics and religion, Programming language, Philosophy, Computational Theory and Mathematics, Combinatorics, FOS: Biological sciences, Computer Science, Physical Sciences, Dynamical Systems and Chaos Theory, FOS: Languages and literature, Integer (computer science), TA1-2040, Mathematics, Sequence (biology)
Popis: We introduce a numeration system, called the beta Cantor series expansion, that generalizes the classical positive and negative beta expansions by allowing non-integer bases in the Q-Cantor series expansion. In particular, we show that for a fix $\gamma \in \mathbb{R}$ and a sequence $B=\{\beta_i\}$ of real number bases, every element of the interval $x \in [\gamma,\gamma+1)$ has a beta Cantor series expansion with respect to B where the digits are integers in some alphabet $\mathcal{A}(B)$. We give a criterion in determining whether an integer sequence is admissible when $B$ satisfies some condition. We provide a description of the reference strings, namely the expansion of $\gamma$ and $\gamma+1$, used in the admissibility criterion.
Druh dokumentu: Article
Other literature type
ISSN: 1805-2363
1210-2709
DOI: 10.14311/ap.2020.60.0214
DOI: 10.60692/2k4ek-6we35
DOI: 10.60692/cpmwc-s3r87
Přístupová URL adresa: https://ojs.cvut.cz/ojs/index.php/ap/article/download/5897/5778
https://doaj.org/article/c56fa8a0b4c3432eb834b0f79037f3ab
Rights: CC BY
Přístupové číslo: edsair.doi.dedup.....f0e9f22e0961c5f07ee1f78ac723335c
Databáze: OpenAIRE
Popis
Abstrakt:We introduce a numeration system, called the beta Cantor series expansion, that generalizes the classical positive and negative beta expansions by allowing non-integer bases in the Q-Cantor series expansion. In particular, we show that for a fix $\gamma \in \mathbb{R}$ and a sequence $B=\{\beta_i\}$ of real number bases, every element of the interval $x \in [\gamma,\gamma+1)$ has a beta Cantor series expansion with respect to B where the digits are integers in some alphabet $\mathcal{A}(B)$. We give a criterion in determining whether an integer sequence is admissible when $B$ satisfies some condition. We provide a description of the reference strings, namely the expansion of $\gamma$ and $\gamma+1$, used in the admissibility criterion.
ISSN:18052363
12102709
DOI:10.14311/ap.2020.60.0214