A Stiffness-Fault-Tolerant Control Strategy for an Elastically Actuated Powered Knee Orthosis

Gespeichert in:
Bibliographische Detailangaben
Titel: A Stiffness-Fault-Tolerant Control Strategy for an Elastically Actuated Powered Knee Orthosis
Autoren: Velasco-Guillen, Rodrigo J., Grosu, Victor, Carmona Ortiz, Víctor A., Vanderborght, Bram, Lefeber, Dirk, Font Llagunes, Josep Maria, Beckerle, Philipp
Weitere Verfasser: Applied Mechanics, FORMER_Robotics & Multibody Mechanics Research Group
Quelle: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Verlagsinformationen: IEEE, 2020.
Publikationsjahr: 2020
Schlagwörter: Robòtica, 0209 industrial biotechnology, Enginyeria biomèdica [Àrees temàtiques de la UPC], Trajectory, Artificial joints, Impedance, Biomecànica, Robotics, Articulacions artificials, 02 engineering and technology, actuators, Àrees temàtiques de la UPC::Enginyeria biomèdica, Springs, Torque, orthosis, Biomechanics, Enginyeria biomèdica::Biomecànica [Àrees temàtiques de la UPC], Àrees temàtiques de la UPC::Enginyeria biomèdica::Biomecànica, Orthopedic implants, Robots, Estimation, Actuators, Pròtesis ortopèdiques
Beschreibung: Elastic actuators can provide safe human-robot interaction and energy efficient mobility. For this purpose they are ideal for wearable robotic applications. However, such actuators are subject to stiffness faults. We present a stiffness-fault-tolerant control strategy for complex elastic actuators, capable of adapting to changes in output stiffness, and demonstrate it on a smart variable stiffness actuator based on the MACCEPA concept. We develop the dynamics of the actuator and a model-based impedance control scheme. Biomechanical data extracted from the flexion/extension of a real knee joint are used as trajectory reference for the evaluation of the control concept in simulation. Results show that the controlled actuator is capable of tracking a reference trajectory under fault conditions and interaction disturbance while maintaining physical human-robot characteristics.
Publikationsart: Article
Conference object
Dateibeschreibung: application/pdf
DOI: 10.1109/biorob49111.2020.9224403
Zugangs-URL: https://researchportal.vub.be/en/publications/a-stiffness-fault-tolerant-control-strategy-for-an-elastically-ac
https://dblp.uni-trier.de/db/conf/biorob/biorob2020.html#Velasco-Guillen20
http://dblp.uni-trier.de/db/conf/biorob/biorob2020.html#Velasco-Guillen20
https://upcommons.upc.edu/handle/2117/340753
https://hdl.handle.net/2117/340753
https://doi.org/10.1109/biorob49111.2020.9224403
https://biblio.vub.ac.be/vubir/a-stiffnessfaulttolerant-control-strategy-for-an-elastically-actuated-powered-knee-orthosis(77cb231c-2a3f-4b31-b1c5-86e04659ea1e).html
Rights: IEEE Copyright
CC BY NC ND
Dokumentencode: edsair.doi.dedup.....ec3d3a6832e1481ec12bd0885ed9b2f1
Datenbank: OpenAIRE
Beschreibung
Abstract:Elastic actuators can provide safe human-robot interaction and energy efficient mobility. For this purpose they are ideal for wearable robotic applications. However, such actuators are subject to stiffness faults. We present a stiffness-fault-tolerant control strategy for complex elastic actuators, capable of adapting to changes in output stiffness, and demonstrate it on a smart variable stiffness actuator based on the MACCEPA concept. We develop the dynamics of the actuator and a model-based impedance control scheme. Biomechanical data extracted from the flexion/extension of a real knee joint are used as trajectory reference for the evaluation of the control concept in simulation. Results show that the controlled actuator is capable of tracking a reference trajectory under fault conditions and interaction disturbance while maintaining physical human-robot characteristics.
DOI:10.1109/biorob49111.2020.9224403