Divergence-Measure Fields, Sets of Finite Perimeter, and Conservation Laws: Divergence-measure fields, sets of finite perimeter, and conservation laws

Uloženo v:
Podrobná bibliografie
Název: Divergence-Measure Fields, Sets of Finite Perimeter, and Conservation Laws: Divergence-measure fields, sets of finite perimeter, and conservation laws
Autoři: Chen, G, Torres, M
Zdroj: Archive for Rational Mechanics and Analysis. 175:245-267
Informace o vydavateli: Springer Science and Business Media LLC, 2004.
Rok vydání: 2004
Témata: Length, area, volume, other geometric measure theory, Hyperbolic conservation laws, divergence-measure fields, Geometric measure and integration theory, integral and normal currents in optimization, normal traces, sets of finite perimeter, Initial-boundary value problems for first-order hyperbolic systems, initial-boundary-value problem, conservation laws, 0101 mathematics, 01 natural sciences, Gauss-Green formula
Popis: The authors analyze divergence-measure fields in \(L^\infty\) over sets of finite perimeter. They introduce the notion of normal traces over boundaries and establish the Gauss-Green formula. The notion of normal traces is shown to be consistent with the notion introduced by \textit{G.-Q. Chen} and \textit{H. Frid} [Arch. Ration. Mech. Anal. 147, No. 2, 89--118 (1999; Zbl 0942.35111)]. In the last section the theory is applied to the initial-boundary-value problem for hyperbolic conservation laws.
Druh dokumentu: Article
Popis souboru: application/xml
Jazyk: English
ISSN: 1432-0673
0003-9527
DOI: 10.1007/s00205-004-0346-1
Přístupová URL adresa: https://zbmath.org/2155992
https://doi.org/10.1007/s00205-004-0346-1
http://ui.adsabs.harvard.edu/abs/2005ArRMA.175..245C/abstract
https://rd.springer.com/article/10.1007/s00205-004-0346-1
https://link.springer.com/10.1007/s00205-004-0346-1
https://link.springer.com/article/10.1007%2Fs00205-004-0346-1
https://dialnet.unirioja.es/servlet/articulo?codigo=1106865
https://www.math.purdue.edu/~torres/pubs/Divergence-measure-fields-laws.pdf
https://ora.ox.ac.uk/objects/uuid:988f8ff2-4252-42af-978a-20652ee9df7e
https://doi.org/10.1007/s00205-004-0346-1
Rights: Springer TDM
Přístupové číslo: edsair.doi.dedup.....dba1d532553b7af5adb80de2eaa23b7e
Databáze: OpenAIRE
Popis
Abstrakt:The authors analyze divergence-measure fields in \(L^\infty\) over sets of finite perimeter. They introduce the notion of normal traces over boundaries and establish the Gauss-Green formula. The notion of normal traces is shown to be consistent with the notion introduced by \textit{G.-Q. Chen} and \textit{H. Frid} [Arch. Ration. Mech. Anal. 147, No. 2, 89--118 (1999; Zbl 0942.35111)]. In the last section the theory is applied to the initial-boundary-value problem for hyperbolic conservation laws.
ISSN:14320673
00039527
DOI:10.1007/s00205-004-0346-1