Divergence-Measure Fields, Sets of Finite Perimeter, and Conservation Laws: Divergence-measure fields, sets of finite perimeter, and conservation laws
Uloženo v:
| Název: | Divergence-Measure Fields, Sets of Finite Perimeter, and Conservation Laws: Divergence-measure fields, sets of finite perimeter, and conservation laws |
|---|---|
| Autoři: | Chen, G, Torres, M |
| Zdroj: | Archive for Rational Mechanics and Analysis. 175:245-267 |
| Informace o vydavateli: | Springer Science and Business Media LLC, 2004. |
| Rok vydání: | 2004 |
| Témata: | Length, area, volume, other geometric measure theory, Hyperbolic conservation laws, divergence-measure fields, Geometric measure and integration theory, integral and normal currents in optimization, normal traces, sets of finite perimeter, Initial-boundary value problems for first-order hyperbolic systems, initial-boundary-value problem, conservation laws, 0101 mathematics, 01 natural sciences, Gauss-Green formula |
| Popis: | The authors analyze divergence-measure fields in \(L^\infty\) over sets of finite perimeter. They introduce the notion of normal traces over boundaries and establish the Gauss-Green formula. The notion of normal traces is shown to be consistent with the notion introduced by \textit{G.-Q. Chen} and \textit{H. Frid} [Arch. Ration. Mech. Anal. 147, No. 2, 89--118 (1999; Zbl 0942.35111)]. In the last section the theory is applied to the initial-boundary-value problem for hyperbolic conservation laws. |
| Druh dokumentu: | Article |
| Popis souboru: | application/xml |
| Jazyk: | English |
| ISSN: | 1432-0673 0003-9527 |
| DOI: | 10.1007/s00205-004-0346-1 |
| Přístupová URL adresa: | https://zbmath.org/2155992 https://doi.org/10.1007/s00205-004-0346-1 http://ui.adsabs.harvard.edu/abs/2005ArRMA.175..245C/abstract https://rd.springer.com/article/10.1007/s00205-004-0346-1 https://link.springer.com/10.1007/s00205-004-0346-1 https://link.springer.com/article/10.1007%2Fs00205-004-0346-1 https://dialnet.unirioja.es/servlet/articulo?codigo=1106865 https://www.math.purdue.edu/~torres/pubs/Divergence-measure-fields-laws.pdf https://ora.ox.ac.uk/objects/uuid:988f8ff2-4252-42af-978a-20652ee9df7e https://doi.org/10.1007/s00205-004-0346-1 |
| Rights: | Springer TDM |
| Přístupové číslo: | edsair.doi.dedup.....dba1d532553b7af5adb80de2eaa23b7e |
| Databáze: | OpenAIRE |
| Abstrakt: | The authors analyze divergence-measure fields in \(L^\infty\) over sets of finite perimeter. They introduce the notion of normal traces over boundaries and establish the Gauss-Green formula. The notion of normal traces is shown to be consistent with the notion introduced by \textit{G.-Q. Chen} and \textit{H. Frid} [Arch. Ration. Mech. Anal. 147, No. 2, 89--118 (1999; Zbl 0942.35111)]. In the last section the theory is applied to the initial-boundary-value problem for hyperbolic conservation laws. |
|---|---|
| ISSN: | 14320673 00039527 |
| DOI: | 10.1007/s00205-004-0346-1 |
Full Text Finder
Nájsť tento článok vo Web of Science