Benefits of Hypergraphs for Density-Based Clustering
Uložené v:
| Názov: | Benefits of Hypergraphs for Density-Based Clustering |
|---|---|
| Autori: | Hauseux, Louis, Avrachenkov, Konstantin, Zerubia, Josiane |
| Prispievatelia: | Hauseux, Louis |
| Zdroj: | 2024 32nd European Signal Processing Conference (EUSIPCO). :2302-2306 |
| Informácie o vydavateľovi: | IEEE, 2024. |
| Rok vydania: | 2024 |
| Predmety: | percolation, [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM], hypergraphs, [INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing, geometric graphs, density estimator, [INFO] Computer Science [cs], hierarchical clustering |
| Popis: | Many of clustering algorithms are based on density estimates in R^d . Building geometric graphs on the dataset X is an elegant way of doing this. In fact, the connected components of a geometric graph match exactly with the high-density clusters of the 1-Nearest Neighbor density estimator. In this paper, We show that the natural way to generalize geometric graphs is to use hypergraphs with a more restrictive notion of connected component called K-Polyhedron. Herein, we prove that K-polyhedra correspond to high-density clusters of K-Nearest Neighbors density estimator. Furthermore, the percolation phenomenon is omnipresent behind the family of clustering algorithms we look at in this paper. |
| Druh dokumentu: | Article Conference object |
| Popis súboru: | application/pdf |
| DOI: | 10.23919/eusipco63174.2024.10715271 |
| Rights: | STM Policy #29 CC BY NC |
| Prístupové číslo: | edsair.doi.dedup.....d9e2fa01c6bdfe6057e5a7b9d402b5cb |
| Databáza: | OpenAIRE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Hauseux%20L Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsair DbLabel: OpenAIRE An: edsair.doi.dedup.....d9e2fa01c6bdfe6057e5a7b9d402b5cb RelevancyScore: 999 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 999.180847167969 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Benefits of Hypergraphs for Density-Based Clustering – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Hauseux%2C+Louis%22">Hauseux, Louis</searchLink><br /><searchLink fieldCode="AR" term="%22Avrachenkov%2C+Konstantin%22">Avrachenkov, Konstantin</searchLink><br /><searchLink fieldCode="AR" term="%22Zerubia%2C+Josiane%22">Zerubia, Josiane</searchLink> – Name: Author Label: Contributors Group: Au Data: Hauseux, Louis – Name: TitleSource Label: Source Group: Src Data: <i>2024 32nd European Signal Processing Conference (EUSIPCO)</i>. :2302-2306 – Name: Publisher Label: Publisher Information Group: PubInfo Data: IEEE, 2024. – Name: DatePubCY Label: Publication Year Group: Date Data: 2024 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22percolation%22">percolation</searchLink><br /><searchLink fieldCode="DE" term="%22[INFO%2EINFO-DM]+Computer+Science+[cs]%2FDiscrete+Mathematics+[cs%2EDM]%22">[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]</searchLink><br /><searchLink fieldCode="DE" term="%22hypergraphs%22">hypergraphs</searchLink><br /><searchLink fieldCode="DE" term="%22[INFO%2EINFO-TS]+Computer+Science+[cs]%2FSignal+and+Image+Processing%22">[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing</searchLink><br /><searchLink fieldCode="DE" term="%22geometric+graphs%22">geometric graphs</searchLink><br /><searchLink fieldCode="DE" term="%22density+estimator%22">density estimator</searchLink><br /><searchLink fieldCode="DE" term="%22[INFO]+Computer+Science+[cs]%22">[INFO] Computer Science [cs]</searchLink><br /><searchLink fieldCode="DE" term="%22hierarchical+clustering%22">hierarchical clustering</searchLink> – Name: Abstract Label: Description Group: Ab Data: Many of clustering algorithms are based on density estimates in R^d . Building geometric graphs on the dataset X is an elegant way of doing this. In fact, the connected components of a geometric graph match exactly with the high-density clusters of the 1-Nearest Neighbor density estimator. In this paper, We show that the natural way to generalize geometric graphs is to use hypergraphs with a more restrictive notion of connected component called K-Polyhedron. Herein, we prove that K-polyhedra correspond to high-density clusters of K-Nearest Neighbors density estimator. Furthermore, the percolation phenomenon is omnipresent behind the family of clustering algorithms we look at in this paper. – Name: TypeDocument Label: Document Type Group: TypDoc Data: Article<br />Conference object – Name: Format Label: File Description Group: SrcInfo Data: application/pdf – Name: DOI Label: DOI Group: ID Data: 10.23919/eusipco63174.2024.10715271 – Name: Copyright Label: Rights Group: Cpyrght Data: STM Policy #29<br />CC BY NC – Name: AN Label: Accession Number Group: ID Data: edsair.doi.dedup.....d9e2fa01c6bdfe6057e5a7b9d402b5cb |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.doi.dedup.....d9e2fa01c6bdfe6057e5a7b9d402b5cb |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.23919/eusipco63174.2024.10715271 Languages: – Text: Undetermined PhysicalDescription: Pagination: PageCount: 5 StartPage: 2302 Subjects: – SubjectFull: percolation Type: general – SubjectFull: [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM] Type: general – SubjectFull: hypergraphs Type: general – SubjectFull: [INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing Type: general – SubjectFull: geometric graphs Type: general – SubjectFull: density estimator Type: general – SubjectFull: [INFO] Computer Science [cs] Type: general – SubjectFull: hierarchical clustering Type: general Titles: – TitleFull: Benefits of Hypergraphs for Density-Based Clustering Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Hauseux, Louis – PersonEntity: Name: NameFull: Avrachenkov, Konstantin – PersonEntity: Name: NameFull: Zerubia, Josiane – PersonEntity: Name: NameFull: Hauseux, Louis IsPartOfRelationships: – BibEntity: Dates: – D: 26 M: 08 Type: published Y: 2024 Identifiers: – Type: issn-locals Value: edsair – Type: issn-locals Value: edsairFT Titles: – TitleFull: 2024 32nd European Signal Processing Conference (EUSIPCO) Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science