Benefits of Hypergraphs for Density-Based Clustering

Uložené v:
Podrobná bibliografia
Názov: Benefits of Hypergraphs for Density-Based Clustering
Autori: Hauseux, Louis, Avrachenkov, Konstantin, Zerubia, Josiane
Prispievatelia: Hauseux, Louis
Zdroj: 2024 32nd European Signal Processing Conference (EUSIPCO). :2302-2306
Informácie o vydavateľovi: IEEE, 2024.
Rok vydania: 2024
Predmety: percolation, [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM], hypergraphs, [INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing, geometric graphs, density estimator, [INFO] Computer Science [cs], hierarchical clustering
Popis: Many of clustering algorithms are based on density estimates in R^d . Building geometric graphs on the dataset X is an elegant way of doing this. In fact, the connected components of a geometric graph match exactly with the high-density clusters of the 1-Nearest Neighbor density estimator. In this paper, We show that the natural way to generalize geometric graphs is to use hypergraphs with a more restrictive notion of connected component called K-Polyhedron. Herein, we prove that K-polyhedra correspond to high-density clusters of K-Nearest Neighbors density estimator. Furthermore, the percolation phenomenon is omnipresent behind the family of clustering algorithms we look at in this paper.
Druh dokumentu: Article
Conference object
Popis súboru: application/pdf
DOI: 10.23919/eusipco63174.2024.10715271
Rights: STM Policy #29
CC BY NC
Prístupové číslo: edsair.doi.dedup.....d9e2fa01c6bdfe6057e5a7b9d402b5cb
Databáza: OpenAIRE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Hauseux%20L
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsair
DbLabel: OpenAIRE
An: edsair.doi.dedup.....d9e2fa01c6bdfe6057e5a7b9d402b5cb
RelevancyScore: 999
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 999.180847167969
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Benefits of Hypergraphs for Density-Based Clustering
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Hauseux%2C+Louis%22">Hauseux, Louis</searchLink><br /><searchLink fieldCode="AR" term="%22Avrachenkov%2C+Konstantin%22">Avrachenkov, Konstantin</searchLink><br /><searchLink fieldCode="AR" term="%22Zerubia%2C+Josiane%22">Zerubia, Josiane</searchLink>
– Name: Author
  Label: Contributors
  Group: Au
  Data: Hauseux, Louis
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>2024 32nd European Signal Processing Conference (EUSIPCO)</i>. :2302-2306
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: IEEE, 2024.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22percolation%22">percolation</searchLink><br /><searchLink fieldCode="DE" term="%22[INFO%2EINFO-DM]+Computer+Science+[cs]%2FDiscrete+Mathematics+[cs%2EDM]%22">[INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]</searchLink><br /><searchLink fieldCode="DE" term="%22hypergraphs%22">hypergraphs</searchLink><br /><searchLink fieldCode="DE" term="%22[INFO%2EINFO-TS]+Computer+Science+[cs]%2FSignal+and+Image+Processing%22">[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing</searchLink><br /><searchLink fieldCode="DE" term="%22geometric+graphs%22">geometric graphs</searchLink><br /><searchLink fieldCode="DE" term="%22density+estimator%22">density estimator</searchLink><br /><searchLink fieldCode="DE" term="%22[INFO]+Computer+Science+[cs]%22">[INFO] Computer Science [cs]</searchLink><br /><searchLink fieldCode="DE" term="%22hierarchical+clustering%22">hierarchical clustering</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Many of clustering algorithms are based on density estimates in R^d . Building geometric graphs on the dataset X is an elegant way of doing this. In fact, the connected components of a geometric graph match exactly with the high-density clusters of the 1-Nearest Neighbor density estimator. In this paper, We show that the natural way to generalize geometric graphs is to use hypergraphs with a more restrictive notion of connected component called K-Polyhedron. Herein, we prove that K-polyhedra correspond to high-density clusters of K-Nearest Neighbors density estimator. Furthermore, the percolation phenomenon is omnipresent behind the family of clustering algorithms we look at in this paper.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Article<br />Conference object
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/pdf
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.23919/eusipco63174.2024.10715271
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: STM Policy #29<br />CC BY NC
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsair.doi.dedup.....d9e2fa01c6bdfe6057e5a7b9d402b5cb
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.doi.dedup.....d9e2fa01c6bdfe6057e5a7b9d402b5cb
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.23919/eusipco63174.2024.10715271
    Languages:
      – Text: Undetermined
    PhysicalDescription:
      Pagination:
        PageCount: 5
        StartPage: 2302
    Subjects:
      – SubjectFull: percolation
        Type: general
      – SubjectFull: [INFO.INFO-DM] Computer Science [cs]/Discrete Mathematics [cs.DM]
        Type: general
      – SubjectFull: hypergraphs
        Type: general
      – SubjectFull: [INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing
        Type: general
      – SubjectFull: geometric graphs
        Type: general
      – SubjectFull: density estimator
        Type: general
      – SubjectFull: [INFO] Computer Science [cs]
        Type: general
      – SubjectFull: hierarchical clustering
        Type: general
    Titles:
      – TitleFull: Benefits of Hypergraphs for Density-Based Clustering
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Hauseux, Louis
      – PersonEntity:
          Name:
            NameFull: Avrachenkov, Konstantin
      – PersonEntity:
          Name:
            NameFull: Zerubia, Josiane
      – PersonEntity:
          Name:
            NameFull: Hauseux, Louis
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 26
              M: 08
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-locals
              Value: edsair
            – Type: issn-locals
              Value: edsairFT
          Titles:
            – TitleFull: 2024 32nd European Signal Processing Conference (EUSIPCO)
              Type: main
ResultId 1