A joint-probability approach to crash prediction models

Uložené v:
Podrobná bibliografia
Názov: A joint-probability approach to crash prediction models
Autori: Wong, SC, Pei, X, Sze, NN
Zdroj: Accident Analysis & Prevention. 43:1160-1166
Informácie o vydavateľovi: Elsevier BV, 2011.
Rok vydania: 2011
Predmety: Models, Statistical, Accidents, Traffic - Classification - Mortality - Prevention & Control - Statistics & Numerical Data, 05 social sciences, Accidents, Traffic, Bayes Theorem, Statistical, Survival Analysis, 01 natural sciences, Markov Chains, Wounds And Injuries - Classification - Epidemiology - Mortality - Prevention & Control, Traffic - Classification - Mortality - Prevention & Control - Statistics & Numerical Data, Models, Accidents, 11. Sustainability, 0502 economics and business, Humans, Wounds and Injuries, Safety - Statistics & Numerical Data, Safety, 0101 mathematics, Monte Carlo Method
Popis: Many road safety researchers have used crash prediction models, such as Poisson and negative binomial regression models, to investigate the associations between crash occurrence and explanatory factors. Typically, they have attempted to separately model the crash frequencies of different severity levels. However, this method may suffer from serious correlations between the model estimates among different levels of crash severity. Despite efforts to improve the statistical fit of crash prediction models by modifying the data structure and model estimation method, little work has addressed the appropriate interpretation of the effects of explanatory factors on crash occurrence among different levels of crash severity. In this paper, a joint probability model is developed to integrate the predictions of both crash occurrence and crash severity into a single framework. For instance, the Markov chain Monte Carlo (MCMC) approach full Bayesian method is applied to estimate the effects of explanatory factors. As an illustration of the appropriateness of the proposed joint probability model, a case study is conducted on crash risk at signalized intersections in Hong Kong. The results of the case study indicate that the proposed model demonstrates a good statistical fit and provides an appropriate analysis of the influences of explanatory factors.
Druh dokumentu: Article
Conference object
Jazyk: English
ISSN: 0001-4575
DOI: 10.1016/j.aap.2010.12.026
Prístupová URL adresa: https://pubmed.ncbi.nlm.nih.gov/21376914
https://www.sciencedirect.com/science/article/pii/S0001457510004033
https://core.ac.uk/display/37971546
https://hub.hku.hk/handle/10722/150553
http://www.sciencedirect.com/science/article/pii/S0001457510004033
https://trid.trb.org/view/1097747
http://hdl.handle.net/10722/150553
http://hdl.handle.net/10722/197363
Rights: Elsevier TDM
Prístupové číslo: edsair.doi.dedup.....d87885d5bf510ef01666e39a1f9fae0c
Databáza: OpenAIRE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://explore.openaire.eu/search/publication?articleId=doi_dedup___%3A%3Ad87885d5bf510ef01666e39a1f9fae0c
    Name: EDS - OpenAIRE (s4221598)
    Category: fullText
    Text: View record at OpenAIRE
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsair&genre=article&issn=00014575&ISBN=&volume=43&issue=&date=20110501&spage=1160&pages=1160-1166&title=Accident Analysis & Prevention&atitle=A%20joint-probability%20approach%20to%20crash%20prediction%20models&aulast=Wong%2C%20SC&id=DOI:10.1016/j.aap.2010.12.026
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Wong%20SC
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsair
DbLabel: OpenAIRE
An: edsair.doi.dedup.....d87885d5bf510ef01666e39a1f9fae0c
RelevancyScore: 829
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 829.224731445313
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: A joint-probability approach to crash prediction models
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Wong%2C+SC%22">Wong, SC</searchLink><br /><searchLink fieldCode="AR" term="%22Pei%2C+X%22">Pei, X</searchLink><br /><searchLink fieldCode="AR" term="%22Sze%2C+NN%22">Sze, NN</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <i>Accident Analysis & Prevention</i>. 43:1160-1166
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Elsevier BV, 2011.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2011
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Models%2C+Statistical%22">Models, Statistical</searchLink><br /><searchLink fieldCode="DE" term="%22Accidents%2C+Traffic+-+Classification+-+Mortality+-+Prevention+%26+Control+-+Statistics+%26+Numerical+Data%22">Accidents, Traffic - Classification - Mortality - Prevention & Control - Statistics & Numerical Data</searchLink><br /><searchLink fieldCode="DE" term="%2205+social+sciences%22">05 social sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Accidents%2C+Traffic%22">Accidents, Traffic</searchLink><br /><searchLink fieldCode="DE" term="%22Bayes+Theorem%22">Bayes Theorem</searchLink><br /><searchLink fieldCode="DE" term="%22Statistical%22">Statistical</searchLink><br /><searchLink fieldCode="DE" term="%22Survival+Analysis%22">Survival Analysis</searchLink><br /><searchLink fieldCode="DE" term="%2201+natural+sciences%22">01 natural sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Markov+Chains%22">Markov Chains</searchLink><br /><searchLink fieldCode="DE" term="%22Wounds+And+Injuries+-+Classification+-+Epidemiology+-+Mortality+-+Prevention+%26+Control%22">Wounds And Injuries - Classification - Epidemiology - Mortality - Prevention & Control</searchLink><br /><searchLink fieldCode="DE" term="%22Traffic+-+Classification+-+Mortality+-+Prevention+%26+Control+-+Statistics+%26+Numerical+Data%22">Traffic - Classification - Mortality - Prevention & Control - Statistics & Numerical Data</searchLink><br /><searchLink fieldCode="DE" term="%22Models%22">Models</searchLink><br /><searchLink fieldCode="DE" term="%22Accidents%22">Accidents</searchLink><br /><searchLink fieldCode="DE" term="%2211%2E+Sustainability%22">11. Sustainability</searchLink><br /><searchLink fieldCode="DE" term="%220502+economics+and+business%22">0502 economics and business</searchLink><br /><searchLink fieldCode="DE" term="%22Humans%22">Humans</searchLink><br /><searchLink fieldCode="DE" term="%22Wounds+and+Injuries%22">Wounds and Injuries</searchLink><br /><searchLink fieldCode="DE" term="%22Safety+-+Statistics+%26+Numerical+Data%22">Safety - Statistics & Numerical Data</searchLink><br /><searchLink fieldCode="DE" term="%22Safety%22">Safety</searchLink><br /><searchLink fieldCode="DE" term="%220101+mathematics%22">0101 mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Monte+Carlo+Method%22">Monte Carlo Method</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Many road safety researchers have used crash prediction models, such as Poisson and negative binomial regression models, to investigate the associations between crash occurrence and explanatory factors. Typically, they have attempted to separately model the crash frequencies of different severity levels. However, this method may suffer from serious correlations between the model estimates among different levels of crash severity. Despite efforts to improve the statistical fit of crash prediction models by modifying the data structure and model estimation method, little work has addressed the appropriate interpretation of the effects of explanatory factors on crash occurrence among different levels of crash severity. In this paper, a joint probability model is developed to integrate the predictions of both crash occurrence and crash severity into a single framework. For instance, the Markov chain Monte Carlo (MCMC) approach full Bayesian method is applied to estimate the effects of explanatory factors. As an illustration of the appropriateness of the proposed joint probability model, a case study is conducted on crash risk at signalized intersections in Hong Kong. The results of the case study indicate that the proposed model demonstrates a good statistical fit and provides an appropriate analysis of the influences of explanatory factors.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Article<br />Conference object
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 0001-4575
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1016/j.aap.2010.12.026
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://pubmed.ncbi.nlm.nih.gov/21376914" linkWindow="_blank">https://pubmed.ncbi.nlm.nih.gov/21376914</link><br /><link linkTarget="URL" linkTerm="https://www.sciencedirect.com/science/article/pii/S0001457510004033" linkWindow="_blank">https://www.sciencedirect.com/science/article/pii/S0001457510004033</link><br /><link linkTarget="URL" linkTerm="https://core.ac.uk/display/37971546" linkWindow="_blank">https://core.ac.uk/display/37971546</link><br /><link linkTarget="URL" linkTerm="https://hub.hku.hk/handle/10722/150553" linkWindow="_blank">https://hub.hku.hk/handle/10722/150553</link><br /><link linkTarget="URL" linkTerm="http://www.sciencedirect.com/science/article/pii/S0001457510004033" linkWindow="_blank">http://www.sciencedirect.com/science/article/pii/S0001457510004033</link><br /><link linkTarget="URL" linkTerm="https://trid.trb.org/view/1097747" linkWindow="_blank">https://trid.trb.org/view/1097747</link><br /><link linkTarget="URL" linkTerm="http://hdl.handle.net/10722/150553" linkWindow="_blank">http://hdl.handle.net/10722/150553</link><br /><link linkTarget="URL" linkTerm="http://hdl.handle.net/10722/197363" linkWindow="_blank">http://hdl.handle.net/10722/197363</link>
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: Elsevier TDM
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsair.doi.dedup.....d87885d5bf510ef01666e39a1f9fae0c
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.doi.dedup.....d87885d5bf510ef01666e39a1f9fae0c
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1016/j.aap.2010.12.026
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 7
        StartPage: 1160
    Subjects:
      – SubjectFull: Models, Statistical
        Type: general
      – SubjectFull: Accidents, Traffic - Classification - Mortality - Prevention & Control - Statistics & Numerical Data
        Type: general
      – SubjectFull: 05 social sciences
        Type: general
      – SubjectFull: Accidents, Traffic
        Type: general
      – SubjectFull: Bayes Theorem
        Type: general
      – SubjectFull: Statistical
        Type: general
      – SubjectFull: Survival Analysis
        Type: general
      – SubjectFull: 01 natural sciences
        Type: general
      – SubjectFull: Markov Chains
        Type: general
      – SubjectFull: Wounds And Injuries - Classification - Epidemiology - Mortality - Prevention & Control
        Type: general
      – SubjectFull: Traffic - Classification - Mortality - Prevention & Control - Statistics & Numerical Data
        Type: general
      – SubjectFull: Models
        Type: general
      – SubjectFull: Accidents
        Type: general
      – SubjectFull: 11. Sustainability
        Type: general
      – SubjectFull: 0502 economics and business
        Type: general
      – SubjectFull: Humans
        Type: general
      – SubjectFull: Wounds and Injuries
        Type: general
      – SubjectFull: Safety - Statistics & Numerical Data
        Type: general
      – SubjectFull: Safety
        Type: general
      – SubjectFull: 0101 mathematics
        Type: general
      – SubjectFull: Monte Carlo Method
        Type: general
    Titles:
      – TitleFull: A joint-probability approach to crash prediction models
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Wong, SC
      – PersonEntity:
          Name:
            NameFull: Pei, X
      – PersonEntity:
          Name:
            NameFull: Sze, NN
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 05
              Type: published
              Y: 2011
          Identifiers:
            – Type: issn-print
              Value: 00014575
            – Type: issn-locals
              Value: edsair
          Numbering:
            – Type: volume
              Value: 43
          Titles:
            – TitleFull: Accident Analysis & Prevention
              Type: main
ResultId 1