A joint-probability approach to crash prediction models
Uložené v:
| Názov: | A joint-probability approach to crash prediction models |
|---|---|
| Autori: | Wong, SC, Pei, X, Sze, NN |
| Zdroj: | Accident Analysis & Prevention. 43:1160-1166 |
| Informácie o vydavateľovi: | Elsevier BV, 2011. |
| Rok vydania: | 2011 |
| Predmety: | Models, Statistical, Accidents, Traffic - Classification - Mortality - Prevention & Control - Statistics & Numerical Data, 05 social sciences, Accidents, Traffic, Bayes Theorem, Statistical, Survival Analysis, 01 natural sciences, Markov Chains, Wounds And Injuries - Classification - Epidemiology - Mortality - Prevention & Control, Traffic - Classification - Mortality - Prevention & Control - Statistics & Numerical Data, Models, Accidents, 11. Sustainability, 0502 economics and business, Humans, Wounds and Injuries, Safety - Statistics & Numerical Data, Safety, 0101 mathematics, Monte Carlo Method |
| Popis: | Many road safety researchers have used crash prediction models, such as Poisson and negative binomial regression models, to investigate the associations between crash occurrence and explanatory factors. Typically, they have attempted to separately model the crash frequencies of different severity levels. However, this method may suffer from serious correlations between the model estimates among different levels of crash severity. Despite efforts to improve the statistical fit of crash prediction models by modifying the data structure and model estimation method, little work has addressed the appropriate interpretation of the effects of explanatory factors on crash occurrence among different levels of crash severity. In this paper, a joint probability model is developed to integrate the predictions of both crash occurrence and crash severity into a single framework. For instance, the Markov chain Monte Carlo (MCMC) approach full Bayesian method is applied to estimate the effects of explanatory factors. As an illustration of the appropriateness of the proposed joint probability model, a case study is conducted on crash risk at signalized intersections in Hong Kong. The results of the case study indicate that the proposed model demonstrates a good statistical fit and provides an appropriate analysis of the influences of explanatory factors. |
| Druh dokumentu: | Article Conference object |
| Jazyk: | English |
| ISSN: | 0001-4575 |
| DOI: | 10.1016/j.aap.2010.12.026 |
| Prístupová URL adresa: | https://pubmed.ncbi.nlm.nih.gov/21376914 https://www.sciencedirect.com/science/article/pii/S0001457510004033 https://core.ac.uk/display/37971546 https://hub.hku.hk/handle/10722/150553 http://www.sciencedirect.com/science/article/pii/S0001457510004033 https://trid.trb.org/view/1097747 http://hdl.handle.net/10722/150553 http://hdl.handle.net/10722/197363 |
| Rights: | Elsevier TDM |
| Prístupové číslo: | edsair.doi.dedup.....d87885d5bf510ef01666e39a1f9fae0c |
| Databáza: | OpenAIRE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://explore.openaire.eu/search/publication?articleId=doi_dedup___%3A%3Ad87885d5bf510ef01666e39a1f9fae0c Name: EDS - OpenAIRE (s4221598) Category: fullText Text: View record at OpenAIRE – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsair&genre=article&issn=00014575&ISBN=&volume=43&issue=&date=20110501&spage=1160&pages=1160-1166&title=Accident Analysis & Prevention&atitle=A%20joint-probability%20approach%20to%20crash%20prediction%20models&aulast=Wong%2C%20SC&id=DOI:10.1016/j.aap.2010.12.026 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Wong%20SC Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsair DbLabel: OpenAIRE An: edsair.doi.dedup.....d87885d5bf510ef01666e39a1f9fae0c RelevancyScore: 829 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 829.224731445313 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: A joint-probability approach to crash prediction models – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Wong%2C+SC%22">Wong, SC</searchLink><br /><searchLink fieldCode="AR" term="%22Pei%2C+X%22">Pei, X</searchLink><br /><searchLink fieldCode="AR" term="%22Sze%2C+NN%22">Sze, NN</searchLink> – Name: TitleSource Label: Source Group: Src Data: <i>Accident Analysis & Prevention</i>. 43:1160-1166 – Name: Publisher Label: Publisher Information Group: PubInfo Data: Elsevier BV, 2011. – Name: DatePubCY Label: Publication Year Group: Date Data: 2011 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Models%2C+Statistical%22">Models, Statistical</searchLink><br /><searchLink fieldCode="DE" term="%22Accidents%2C+Traffic+-+Classification+-+Mortality+-+Prevention+%26+Control+-+Statistics+%26+Numerical+Data%22">Accidents, Traffic - Classification - Mortality - Prevention & Control - Statistics & Numerical Data</searchLink><br /><searchLink fieldCode="DE" term="%2205+social+sciences%22">05 social sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Accidents%2C+Traffic%22">Accidents, Traffic</searchLink><br /><searchLink fieldCode="DE" term="%22Bayes+Theorem%22">Bayes Theorem</searchLink><br /><searchLink fieldCode="DE" term="%22Statistical%22">Statistical</searchLink><br /><searchLink fieldCode="DE" term="%22Survival+Analysis%22">Survival Analysis</searchLink><br /><searchLink fieldCode="DE" term="%2201+natural+sciences%22">01 natural sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Markov+Chains%22">Markov Chains</searchLink><br /><searchLink fieldCode="DE" term="%22Wounds+And+Injuries+-+Classification+-+Epidemiology+-+Mortality+-+Prevention+%26+Control%22">Wounds And Injuries - Classification - Epidemiology - Mortality - Prevention & Control</searchLink><br /><searchLink fieldCode="DE" term="%22Traffic+-+Classification+-+Mortality+-+Prevention+%26+Control+-+Statistics+%26+Numerical+Data%22">Traffic - Classification - Mortality - Prevention & Control - Statistics & Numerical Data</searchLink><br /><searchLink fieldCode="DE" term="%22Models%22">Models</searchLink><br /><searchLink fieldCode="DE" term="%22Accidents%22">Accidents</searchLink><br /><searchLink fieldCode="DE" term="%2211%2E+Sustainability%22">11. Sustainability</searchLink><br /><searchLink fieldCode="DE" term="%220502+economics+and+business%22">0502 economics and business</searchLink><br /><searchLink fieldCode="DE" term="%22Humans%22">Humans</searchLink><br /><searchLink fieldCode="DE" term="%22Wounds+and+Injuries%22">Wounds and Injuries</searchLink><br /><searchLink fieldCode="DE" term="%22Safety+-+Statistics+%26+Numerical+Data%22">Safety - Statistics & Numerical Data</searchLink><br /><searchLink fieldCode="DE" term="%22Safety%22">Safety</searchLink><br /><searchLink fieldCode="DE" term="%220101+mathematics%22">0101 mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22Monte+Carlo+Method%22">Monte Carlo Method</searchLink> – Name: Abstract Label: Description Group: Ab Data: Many road safety researchers have used crash prediction models, such as Poisson and negative binomial regression models, to investigate the associations between crash occurrence and explanatory factors. Typically, they have attempted to separately model the crash frequencies of different severity levels. However, this method may suffer from serious correlations between the model estimates among different levels of crash severity. Despite efforts to improve the statistical fit of crash prediction models by modifying the data structure and model estimation method, little work has addressed the appropriate interpretation of the effects of explanatory factors on crash occurrence among different levels of crash severity. In this paper, a joint probability model is developed to integrate the predictions of both crash occurrence and crash severity into a single framework. For instance, the Markov chain Monte Carlo (MCMC) approach full Bayesian method is applied to estimate the effects of explanatory factors. As an illustration of the appropriateness of the proposed joint probability model, a case study is conducted on crash risk at signalized intersections in Hong Kong. The results of the case study indicate that the proposed model demonstrates a good statistical fit and provides an appropriate analysis of the influences of explanatory factors. – Name: TypeDocument Label: Document Type Group: TypDoc Data: Article<br />Conference object – Name: Language Label: Language Group: Lang Data: English – Name: ISSN Label: ISSN Group: ISSN Data: 0001-4575 – Name: DOI Label: DOI Group: ID Data: 10.1016/j.aap.2010.12.026 – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://pubmed.ncbi.nlm.nih.gov/21376914" linkWindow="_blank">https://pubmed.ncbi.nlm.nih.gov/21376914</link><br /><link linkTarget="URL" linkTerm="https://www.sciencedirect.com/science/article/pii/S0001457510004033" linkWindow="_blank">https://www.sciencedirect.com/science/article/pii/S0001457510004033</link><br /><link linkTarget="URL" linkTerm="https://core.ac.uk/display/37971546" linkWindow="_blank">https://core.ac.uk/display/37971546</link><br /><link linkTarget="URL" linkTerm="https://hub.hku.hk/handle/10722/150553" linkWindow="_blank">https://hub.hku.hk/handle/10722/150553</link><br /><link linkTarget="URL" linkTerm="http://www.sciencedirect.com/science/article/pii/S0001457510004033" linkWindow="_blank">http://www.sciencedirect.com/science/article/pii/S0001457510004033</link><br /><link linkTarget="URL" linkTerm="https://trid.trb.org/view/1097747" linkWindow="_blank">https://trid.trb.org/view/1097747</link><br /><link linkTarget="URL" linkTerm="http://hdl.handle.net/10722/150553" linkWindow="_blank">http://hdl.handle.net/10722/150553</link><br /><link linkTarget="URL" linkTerm="http://hdl.handle.net/10722/197363" linkWindow="_blank">http://hdl.handle.net/10722/197363</link> – Name: Copyright Label: Rights Group: Cpyrght Data: Elsevier TDM – Name: AN Label: Accession Number Group: ID Data: edsair.doi.dedup.....d87885d5bf510ef01666e39a1f9fae0c |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.doi.dedup.....d87885d5bf510ef01666e39a1f9fae0c |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1016/j.aap.2010.12.026 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 7 StartPage: 1160 Subjects: – SubjectFull: Models, Statistical Type: general – SubjectFull: Accidents, Traffic - Classification - Mortality - Prevention & Control - Statistics & Numerical Data Type: general – SubjectFull: 05 social sciences Type: general – SubjectFull: Accidents, Traffic Type: general – SubjectFull: Bayes Theorem Type: general – SubjectFull: Statistical Type: general – SubjectFull: Survival Analysis Type: general – SubjectFull: 01 natural sciences Type: general – SubjectFull: Markov Chains Type: general – SubjectFull: Wounds And Injuries - Classification - Epidemiology - Mortality - Prevention & Control Type: general – SubjectFull: Traffic - Classification - Mortality - Prevention & Control - Statistics & Numerical Data Type: general – SubjectFull: Models Type: general – SubjectFull: Accidents Type: general – SubjectFull: 11. Sustainability Type: general – SubjectFull: 0502 economics and business Type: general – SubjectFull: Humans Type: general – SubjectFull: Wounds and Injuries Type: general – SubjectFull: Safety - Statistics & Numerical Data Type: general – SubjectFull: Safety Type: general – SubjectFull: 0101 mathematics Type: general – SubjectFull: Monte Carlo Method Type: general Titles: – TitleFull: A joint-probability approach to crash prediction models Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Wong, SC – PersonEntity: Name: NameFull: Pei, X – PersonEntity: Name: NameFull: Sze, NN IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 05 Type: published Y: 2011 Identifiers: – Type: issn-print Value: 00014575 – Type: issn-locals Value: edsair Numbering: – Type: volume Value: 43 Titles: – TitleFull: Accident Analysis & Prevention Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science