Convergence of the recursive identification algorithms for multivariate pseudo‐linear regressive systems: Convergence of the recursive identification algorithms for multivariate pseudo-linear regressive systems

Uloženo v:
Podrobná bibliografie
Název: Convergence of the recursive identification algorithms for multivariate pseudo‐linear regressive systems: Convergence of the recursive identification algorithms for multivariate pseudo-linear regressive systems
Autoři: Xuehai Wang, Feng Ding
Zdroj: International Journal of Adaptive Control and Signal Processing. 30:824-842
Informace o vydavateli: Wiley, 2015.
Rok vydání: 2015
Témata: Systems theory, control, pseudo-linear regressive model, stochastic gradient algorithm, martingale convergence theorem, parameter estimation, 16. Peace & justice, least squares algorithm
Popis: SummaryThe performance analysis of the recursive algorithms for the multivariate systems with an autoregressive moving average noise process is still open. This paper analyzes the convergence of two recursive identification algorithms, the multivariate recursive generalized extended least squares algorithm and the multivariate generalized extended stochastic gradient algorithm, for pseudo‐linear multivariate systems and proves that the parameter estimation errors consistently converge to zero under persistent excitation conditions. The simulation results show that the proposed algorithms work well. Copyright © 2015 John Wiley & Sons, Ltd.
Druh dokumentu: Article
Popis souboru: application/xml
Jazyk: English
ISSN: 1099-1115
0890-6327
DOI: 10.1002/acs.2642
Přístupová URL adresa: https://zbmath.org/8036807
https://doi.org/10.1002/acs.2642
https://dlnext.acm.org/doi/10.1002/acs.2642
https://onlinelibrary.wiley.com/doi/10.1002/acs.2642
Rights: Wiley Online Library User Agreement
Přístupové číslo: edsair.doi.dedup.....c7de1fac9f99f6f3b58ff82417f02de0
Databáze: OpenAIRE
Popis
Abstrakt:SummaryThe performance analysis of the recursive algorithms for the multivariate systems with an autoregressive moving average noise process is still open. This paper analyzes the convergence of two recursive identification algorithms, the multivariate recursive generalized extended least squares algorithm and the multivariate generalized extended stochastic gradient algorithm, for pseudo‐linear multivariate systems and proves that the parameter estimation errors consistently converge to zero under persistent excitation conditions. The simulation results show that the proposed algorithms work well. Copyright © 2015 John Wiley & Sons, Ltd.
ISSN:10991115
08906327
DOI:10.1002/acs.2642