Using machine learning for timing analysis: where do we stand?

Gespeichert in:
Bibliographische Detailangaben
Titel: Using machine learning for timing analysis: where do we stand?
Autoren: Amalou, Abderaouf Nassim, Puaut, Isabelle
Weitere Verfasser: AMALOU, Abderaouf Nassim
Quelle: Real-Time Systems. 61:300-305
Verlagsinformationen: Springer Science and Business Media LLC, 2025.
Publikationsjahr: 2025
Schlagwörter: [INFO.INFO-AR] Computer Science [cs]/Hardware Architecture [cs.AR], [INFO.INFO-PF] Computer Science [cs]/Performance [cs.PF], [INFO.INFO-LG] Computer Science [cs]/Machine Learning [cs.LG], [INFO] Computer Science [cs], [INFO.INFO-ES] Computer Science [cs]/Embedded Systems
Beschreibung: This paper presents our experience using Machine Learning (ML) to predict the Worst-Case Execution Time (WCET) of small code snippets on single-core platforms. We provide a concise overview of our work, highlight key observations made throughout our study, and advocate for further exploration of this topic. Keywords Worst-case execution time (WCET) estimation • Machine learning (ML)
Publikationsart: Article
Dateibeschreibung: application/pdf
Sprache: English
ISSN: 1573-1383
0922-6443
DOI: 10.1007/s11241-025-09442-y
Rights: Springer Nature TDM
CC BY
Dokumentencode: edsair.doi.dedup.....be06abce4e5405b4d41e8338bea0d5a0
Datenbank: OpenAIRE
Beschreibung
Abstract:This paper presents our experience using Machine Learning (ML) to predict the Worst-Case Execution Time (WCET) of small code snippets on single-core platforms. We provide a concise overview of our work, highlight key observations made throughout our study, and advocate for further exploration of this topic. Keywords Worst-case execution time (WCET) estimation • Machine learning (ML)
ISSN:15731383
09226443
DOI:10.1007/s11241-025-09442-y