Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru)
Gespeichert in:
| Titel: | Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru) |
|---|---|
| Autoren: | José Chang Kee, María J. Gonzales, Olga Ponce, Lorena Ramírez, Vladimir León, Adelia Torres, Melissa Corpus, Raúl Loayza-Muro |
| Quelle: | Environmental Science and Pollution Research. 25:33957-33966 |
| Verlagsinformationen: | Springer Science and Business Media LLC, 2018. |
| Publikationsjahr: | 2018 |
| Schlagwörter: | Soil Pollutants/analysis/pharmacokinetics, Andes, Plant Roots, 01 natural sciences, Mining, Plant Shoots/drug effects/metabolism, Native plant species, Metals, Heavy, Peru, Soil Pollutants, Plant Roots/chemistry/drug effects/metabolism, Environmental Restoration and Remediation, 0105 earth and related environmental sciences, Mine tailings, Environmental Restoration and Remediation/methods, Plants, 15. Life on land, 6. Clean water, Phytoremediation, Plants/drug effects/metabolism, Biodegradation, Environmental, Metals, 13. Climate action, Plant Shoots, Metals, Heavy/analysis/pharmacokinetics |
| Beschreibung: | Metal contamination is a recurring problem in Peru, caused mainly by mine tailings from a past active mining activity. The Ancash region has the largest number of environmental liabilities, which mobilizes high levels of metals and acid drainages into soils and freshwater sources, posing a standing risk on human and environmental health. Native plant species spontaneously growing on naturally acidified soils and acid mine tailings show a unique tolerance to high metal concentrations and are thus potential candidates for soil phytoremediation. However, little is known about their propagation capacity and metal accumulation under controlled conditions. In this study, we aimed at characterizing nine native plant species, previously identified as potential hyperaccumulators, from areas impacted by mine tailings in the Ancash region. Plants were grown on mine soils under greenhouse conditions during 5 months, after which the concentration of Cd, Cu, Ni, Pb, and Zn was analyzed in roots, shoots, and soils. The bioaccumulation (BAF) and translocation factor (TF) were calculated to determine the amount of each metal accumulated in the roots and shoots and to identify which species could be better suited for phytoremediation purposes. Soil samples contained high Cd (6.50-49.80 mg/kg), Cu (159.50-1187.00 mg/kg), Ni (3.50-8.70 mg/kg), Pb (1707.00-4243.00 mg/kg), and Zn (909.00-7100.00 mg/kg) concentrations exceeding national environmental quality standards. After exposure to mine tailings, concentrations of metals in shoots were highest in Werneria nubigena (Cd, 16.68 mg/kg; Cu, 41.36 mg/kg; Ni, 26.85 mg/kg; Zn, 1691.03 mg/kg), Pennisetum clandestinum (Pb, 236.86 mg/kg), and Medicago lupulina (Zn, 1078.10 mg/kg). Metal concentrations in the roots were highest in Juncus bufonius (Cd, 34.34 mg/kg; Cu, 251.07 mg/kg; Ni, 6.60 mg/kg; Pb, 718.44 mg/kg) and M. lupulina (Zn, 2415.73 mg/kg). The greatest BAF was calculated for W. nubigena (Cd, 1.92; Cu, 1.20; Ni, 6.50; Zn, 3.50) and J. bufonius (Ni, 3.02; Zn, 1.30); BCF for Calamagrostis recta (Cd, 1.09; Cu, 1.80; Ni, 1.09), J. bufonius (Cd, 3.91; Cu, 1.79; Ni, 18.36), and Achyrocline alata (Ni, 137; Zn, 1.85); and TF for W. nubigena (Cd, 2.36; Cu, 1.70; Ni, 2.42; Pb, 1.17; Zn, 1.43), A. alata (Cd, 1.14; Pb, 1.94), J. bufonius (Ni, 2.72; Zn, 1.63), and P. clandestinum (Zn, 1.14). Our results suggest that these plant species have a great potential for soil phytoremediation, given their capability to accumulate and transfer metals and their tolerance to highly metal-polluted environments in the Andean region. |
| Publikationsart: | Article |
| Sprache: | English |
| ISSN: | 1614-7499 0944-1344 |
| DOI: | 10.1007/s11356-018-3325-z |
| Zugangs-URL: | https://pubmed.ncbi.nlm.nih.gov/30280335 https://link.springer.com/article/10.1007/s11356-018-3325-z https://pubmed.ncbi.nlm.nih.gov/30280335/ https://europepmc.org/abstract/MED/30280335 https://www.ncbi.nlm.nih.gov/pubmed/30280335 https://repositorio.upch.edu.pe/handle/20.500.12866/5875 |
| Rights: | Springer TDM |
| Dokumentencode: | edsair.doi.dedup.....b86f8f34041c6eb76fde69f1a71527cc |
| Datenbank: | OpenAIRE |
| Abstract: | Metal contamination is a recurring problem in Peru, caused mainly by mine tailings from a past active mining activity. The Ancash region has the largest number of environmental liabilities, which mobilizes high levels of metals and acid drainages into soils and freshwater sources, posing a standing risk on human and environmental health. Native plant species spontaneously growing on naturally acidified soils and acid mine tailings show a unique tolerance to high metal concentrations and are thus potential candidates for soil phytoremediation. However, little is known about their propagation capacity and metal accumulation under controlled conditions. In this study, we aimed at characterizing nine native plant species, previously identified as potential hyperaccumulators, from areas impacted by mine tailings in the Ancash region. Plants were grown on mine soils under greenhouse conditions during 5 months, after which the concentration of Cd, Cu, Ni, Pb, and Zn was analyzed in roots, shoots, and soils. The bioaccumulation (BAF) and translocation factor (TF) were calculated to determine the amount of each metal accumulated in the roots and shoots and to identify which species could be better suited for phytoremediation purposes. Soil samples contained high Cd (6.50-49.80 mg/kg), Cu (159.50-1187.00 mg/kg), Ni (3.50-8.70 mg/kg), Pb (1707.00-4243.00 mg/kg), and Zn (909.00-7100.00 mg/kg) concentrations exceeding national environmental quality standards. After exposure to mine tailings, concentrations of metals in shoots were highest in Werneria nubigena (Cd, 16.68 mg/kg; Cu, 41.36 mg/kg; Ni, 26.85 mg/kg; Zn, 1691.03 mg/kg), Pennisetum clandestinum (Pb, 236.86 mg/kg), and Medicago lupulina (Zn, 1078.10 mg/kg). Metal concentrations in the roots were highest in Juncus bufonius (Cd, 34.34 mg/kg; Cu, 251.07 mg/kg; Ni, 6.60 mg/kg; Pb, 718.44 mg/kg) and M. lupulina (Zn, 2415.73 mg/kg). The greatest BAF was calculated for W. nubigena (Cd, 1.92; Cu, 1.20; Ni, 6.50; Zn, 3.50) and J. bufonius (Ni, 3.02; Zn, 1.30); BCF for Calamagrostis recta (Cd, 1.09; Cu, 1.80; Ni, 1.09), J. bufonius (Cd, 3.91; Cu, 1.79; Ni, 18.36), and Achyrocline alata (Ni, 137; Zn, 1.85); and TF for W. nubigena (Cd, 2.36; Cu, 1.70; Ni, 2.42; Pb, 1.17; Zn, 1.43), A. alata (Cd, 1.14; Pb, 1.94), J. bufonius (Ni, 2.72; Zn, 1.63), and P. clandestinum (Zn, 1.14). Our results suggest that these plant species have a great potential for soil phytoremediation, given their capability to accumulate and transfer metals and their tolerance to highly metal-polluted environments in the Andean region. |
|---|---|
| ISSN: | 16147499 09441344 |
| DOI: | 10.1007/s11356-018-3325-z |
Full Text Finder
Nájsť tento článok vo Web of Science