Federated Imitation Learning: A Novel Framework for Cloud Robotic Systems With Heterogeneous Sensor Data
Uloženo v:
| Název: | Federated Imitation Learning: A Novel Framework for Cloud Robotic Systems With Heterogeneous Sensor Data |
|---|---|
| Autoři: | Boyi Liu, Lujia Wang, Ming Liu, Cheng-Zhong Xu |
| Zdroj: | IEEE Robotics and Automation Letters. 5:3509-3516 |
| Publication Status: | Preprint |
| Informace o vydavateli: | Institute of Electrical and Electronics Engineers (IEEE), 2020. |
| Rok vydání: | 2020 |
| Témata: | FOS: Computer and information sciences, Computer Science - Machine Learning, 0209 industrial biotechnology, Big data in robotics and automation, Computer Science - Artificial Intelligence, Computational modeling, 02 engineering and technology, Microstrip, Machine Learning (cs.LG), Computer Science - Robotics, Artificial Intelligence (cs.AI), Deep learning in robotics and automation, Motion and path planning, Robot sensing systems, Task analysis, Fuses, Cloud computing, Robotics (cs.RO) |
| Popis: | Humans are capable of learning a new behavior by observing others to perform the skill. Similarly, robots can also implement this by imitation learning. Furthermore, if with external guidance, humans can master the new behavior more efficiently. So, how can robots achieve this? To address the issue, we present a novel framework named FIL. It provides a heterogeneous knowledge fusion mechanism for cloud robotic systems. Then, a knowledge fusion algorithm in FIL is proposed. It enables the cloud to fuse heterogeneous knowledge from local robots and generate guide models for robots with service requests. After that, we introduce a knowledge transfer scheme to facilitate local robots acquiring knowledge from the cloud. With FIL, a robot is capable of utilizing knowledge from other robots to increase its imitation learning in accuracy and efficiency. Compared with transfer learning and meta-learning, FIL is more suitable to be deployed in cloud robotic systems. Finally, we conduct experiments of a self-driving task for robots (cars). The experimental results demonstrate that the shared model generated by FIL increases imitation learning efficiency of local robots in cloud robotic systems. arXiv admin note: substantial text overlap with arXiv:1909.00895 |
| Druh dokumentu: | Article |
| ISSN: | 2377-3774 |
| DOI: | 10.1109/lra.2020.2976321 |
| DOI: | 10.48550/arxiv.1912.12204 |
| Přístupová URL adresa: | http://arxiv.org/pdf/1912.12204 http://arxiv.org/abs/1912.12204 http://ieeexplore.ieee.org/document/9013081/ https://dblp.uni-trier.de/db/journals/corr/corr1912.html#abs-1912-12204 https://ieeexplore.ieee.org/document/9013081/ https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=202002274053393025 http://dblp.uni-trier.de/db/journals/ral/ral5.html#LiuWLX20 |
| Rights: | IEEE Copyright arXiv Non-Exclusive Distribution |
| Přístupové číslo: | edsair.doi.dedup.....8ef9e33390e0b51cc8cac7cf4e5f9f36 |
| Databáze: | OpenAIRE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://explore.openaire.eu/search/publication?articleId=doi_dedup___%3A%3A8ef9e33390e0b51cc8cac7cf4e5f9f36 Name: EDS - OpenAIRE (s4221598) Category: fullText Text: View record at OpenAIRE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Liu%20B Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsair DbLabel: OpenAIRE An: edsair.doi.dedup.....8ef9e33390e0b51cc8cac7cf4e5f9f36 RelevancyScore: 887 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 887.180725097656 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Federated Imitation Learning: A Novel Framework for Cloud Robotic Systems With Heterogeneous Sensor Data – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Boyi+Liu%22">Boyi Liu</searchLink><br /><searchLink fieldCode="AR" term="%22Lujia+Wang%22">Lujia Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Ming+Liu%22">Ming Liu</searchLink><br /><searchLink fieldCode="AR" term="%22Cheng-Zhong+Xu%22">Cheng-Zhong Xu</searchLink> – Name: TitleSource Label: Source Group: Src Data: <i>IEEE Robotics and Automation Letters</i>. 5:3509-3516 – Name: Publisher Label: Publication Status Group: PubInfo Data: Preprint – Name: Publisher Label: Publisher Information Group: PubInfo Data: Institute of Electrical and Electronics Engineers (IEEE), 2020. – Name: DatePubCY Label: Publication Year Group: Date Data: 2020 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22FOS%3A+Computer+and+information+sciences%22">FOS: Computer and information sciences</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+Science+-+Machine+Learning%22">Computer Science - Machine Learning</searchLink><br /><searchLink fieldCode="DE" term="%220209+industrial+biotechnology%22">0209 industrial biotechnology</searchLink><br /><searchLink fieldCode="DE" term="%22Big+data+in+robotics+and+automation%22">Big data in robotics and automation</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+Science+-+Artificial+Intelligence%22">Computer Science - Artificial Intelligence</searchLink><br /><searchLink fieldCode="DE" term="%22Computational+modeling%22">Computational modeling</searchLink><br /><searchLink fieldCode="DE" term="%2202+engineering+and+technology%22">02 engineering and technology</searchLink><br /><searchLink fieldCode="DE" term="%22Microstrip%22">Microstrip</searchLink><br /><searchLink fieldCode="DE" term="%22Machine+Learning+%28cs%2ELG%29%22">Machine Learning (cs.LG)</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+Science+-+Robotics%22">Computer Science - Robotics</searchLink><br /><searchLink fieldCode="DE" term="%22Artificial+Intelligence+%28cs%2EAI%29%22">Artificial Intelligence (cs.AI)</searchLink><br /><searchLink fieldCode="DE" term="%22Deep+learning+in+robotics+and+automation%22">Deep learning in robotics and automation</searchLink><br /><searchLink fieldCode="DE" term="%22Motion+and+path+planning%22">Motion and path planning</searchLink><br /><searchLink fieldCode="DE" term="%22Robot+sensing+systems%22">Robot sensing systems</searchLink><br /><searchLink fieldCode="DE" term="%22Task+analysis%22">Task analysis</searchLink><br /><searchLink fieldCode="DE" term="%22Fuses%22">Fuses</searchLink><br /><searchLink fieldCode="DE" term="%22Cloud+computing%22">Cloud computing</searchLink><br /><searchLink fieldCode="DE" term="%22Robotics+%28cs%2ERO%29%22">Robotics (cs.RO)</searchLink> – Name: Abstract Label: Description Group: Ab Data: Humans are capable of learning a new behavior by observing others to perform the skill. Similarly, robots can also implement this by imitation learning. Furthermore, if with external guidance, humans can master the new behavior more efficiently. So, how can robots achieve this? To address the issue, we present a novel framework named FIL. It provides a heterogeneous knowledge fusion mechanism for cloud robotic systems. Then, a knowledge fusion algorithm in FIL is proposed. It enables the cloud to fuse heterogeneous knowledge from local robots and generate guide models for robots with service requests. After that, we introduce a knowledge transfer scheme to facilitate local robots acquiring knowledge from the cloud. With FIL, a robot is capable of utilizing knowledge from other robots to increase its imitation learning in accuracy and efficiency. Compared with transfer learning and meta-learning, FIL is more suitable to be deployed in cloud robotic systems. Finally, we conduct experiments of a self-driving task for robots (cars). The experimental results demonstrate that the shared model generated by FIL increases imitation learning efficiency of local robots in cloud robotic systems.<br />arXiv admin note: substantial text overlap with arXiv:1909.00895 – Name: TypeDocument Label: Document Type Group: TypDoc Data: Article – Name: ISSN Label: ISSN Group: ISSN Data: 2377-3774 – Name: DOI Label: DOI Group: ID Data: 10.1109/lra.2020.2976321 – Name: DOI Label: DOI Group: ID Data: 10.48550/arxiv.1912.12204 – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="http://arxiv.org/pdf/1912.12204" linkWindow="_blank">http://arxiv.org/pdf/1912.12204</link><br /><link linkTarget="URL" linkTerm="http://arxiv.org/abs/1912.12204" linkWindow="_blank">http://arxiv.org/abs/1912.12204</link><br /><link linkTarget="URL" linkTerm="http://ieeexplore.ieee.org/document/9013081/" linkWindow="_blank">http://ieeexplore.ieee.org/document/9013081/</link><br /><link linkTarget="URL" linkTerm="https://dblp.uni-trier.de/db/journals/corr/corr1912.html#abs-1912-12204" linkWindow="_blank">https://dblp.uni-trier.de/db/journals/corr/corr1912.html#abs-1912-12204</link><br /><link linkTarget="URL" linkTerm="https://ieeexplore.ieee.org/document/9013081/" linkWindow="_blank">https://ieeexplore.ieee.org/document/9013081/</link><br /><link linkTarget="URL" linkTerm="https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=202002274053393025" linkWindow="_blank">https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=202002274053393025</link><br /><link linkTarget="URL" linkTerm="http://dblp.uni-trier.de/db/journals/ral/ral5.html#LiuWLX20" linkWindow="_blank">http://dblp.uni-trier.de/db/journals/ral/ral5.html#LiuWLX20</link> – Name: Copyright Label: Rights Group: Cpyrght Data: IEEE Copyright<br />arXiv Non-Exclusive Distribution – Name: AN Label: Accession Number Group: ID Data: edsair.doi.dedup.....8ef9e33390e0b51cc8cac7cf4e5f9f36 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.doi.dedup.....8ef9e33390e0b51cc8cac7cf4e5f9f36 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1109/lra.2020.2976321 Languages: – Text: Undetermined PhysicalDescription: Pagination: PageCount: 8 StartPage: 3509 Subjects: – SubjectFull: FOS: Computer and information sciences Type: general – SubjectFull: Computer Science - Machine Learning Type: general – SubjectFull: 0209 industrial biotechnology Type: general – SubjectFull: Big data in robotics and automation Type: general – SubjectFull: Computer Science - Artificial Intelligence Type: general – SubjectFull: Computational modeling Type: general – SubjectFull: 02 engineering and technology Type: general – SubjectFull: Microstrip Type: general – SubjectFull: Machine Learning (cs.LG) Type: general – SubjectFull: Computer Science - Robotics Type: general – SubjectFull: Artificial Intelligence (cs.AI) Type: general – SubjectFull: Deep learning in robotics and automation Type: general – SubjectFull: Motion and path planning Type: general – SubjectFull: Robot sensing systems Type: general – SubjectFull: Task analysis Type: general – SubjectFull: Fuses Type: general – SubjectFull: Cloud computing Type: general – SubjectFull: Robotics (cs.RO) Type: general Titles: – TitleFull: Federated Imitation Learning: A Novel Framework for Cloud Robotic Systems With Heterogeneous Sensor Data Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Boyi Liu – PersonEntity: Name: NameFull: Lujia Wang – PersonEntity: Name: NameFull: Ming Liu – PersonEntity: Name: NameFull: Cheng-Zhong Xu IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 04 Type: published Y: 2020 Identifiers: – Type: issn-print Value: 23773774 – Type: issn-locals Value: edsair – Type: issn-locals Value: edsairFT Numbering: – Type: volume Value: 5 Titles: – TitleFull: IEEE Robotics and Automation Letters Type: main |
| ResultId | 1 |
Nájsť tento článok vo Web of Science