Optimizing drug design by merging generative AI with a physics-based active learning framework

Gespeichert in:
Bibliographische Detailangaben
Titel: Optimizing drug design by merging generative AI with a physics-based active learning framework
Autoren: Isaac Filella-Merce, Alexis Molina, Lucía Díaz, Marek Orzechowski, Yamina A. Berchiche, Yang Ming Zhu, Júlia Vilalta-Mor, Laura Malo, Ajay S. Yekkirala, Soumya Ray, Victor Guallar
Quelle: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Verlagsinformationen: Springer Science and Business Media LLC, 2025.
Publikationsjahr: 2025
Schlagwörter: Virtual screening, Generative models (GMs), Computational chemistry, Cheminformatics, Àrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica::Bioinformàtica, Machine learning, Àrees temàtiques de la UPC::Enginyeria química, Drug discovery and development, Drug design
Beschreibung: Machine learning is transforming drug discovery, with generative models (GMs) gaining attention for their ability to design molecules with specific properties. However, GMs often struggle with target engagement, synthetic accessibility, or generalization. To address these, we developed a GM workflow integrating a variational autoencoder with two nested active learning cycles. These iteratively refine their predictions using chemoinformatics and molecular modeling predictors. We tested our workflow on two systems, CDK2 and KRAS, successfully generating diverse, drug-like molecules with high predicted affinity and synthesis accessibility. Notably, we generated novel scaffolds distinct from those known for each target. For CDK2, we synthetized 9 molecules yielding 8 with in vitro activity, including one with nanomolar potency. For KRAS, in silico methods validated by CDK2 assays identified 4 molecules with potential activity. These findings showcase our GM workflow’s ability to explore novel chemical spaces tailored for specific targets, thereby opening new avenues in drug discovery.
Publikationsart: Article
Dateibeschreibung: application/pdf
Sprache: English
ISSN: 2399-3669
DOI: 10.1038/s42004-025-01635-7
Zugangs-URL: https://hdl.handle.net/2117/440567
https://doi.org/10.1038/s42004-025-01635-7
Rights: CC BY NC ND
Dokumentencode: edsair.doi.dedup.....6de1dc7a1ffcb1b0b2970a876d8996a8
Datenbank: OpenAIRE