Local homeo- and diffeomorphisms: invertibility and convex image: Local homeo- and diffeomorphisms: Invertibility and convex image

Uložené v:
Podrobná bibliografia
Názov: Local homeo- and diffeomorphisms: invertibility and convex image: Local homeo- and diffeomorphisms: Invertibility and convex image
Autori: GAETANO ZAMPIERI, GORNI, Gianluca
Zdroj: Bulletin of the Australian Mathematical Society. 49:377-398
Informácie o vydavateľovi: Cambridge University Press (CUP), 1994.
Rok vydania: 1994
Predmety: local diffeomorphisms, Implicit function theorems, Jacobians, transformations with several variables, 0209 industrial biotechnology, Local homeomorphims, injectivity, convex image, Equations involving nonlinear operators (general), invertibility, 02 engineering and technology, convex image, 0101 mathematics, local homeomorphism, 01 natural sciences, Implicit function theorems, global Newton methods on manifolds
Popis: We prove a necessary and sufficient condition for a local homeomorphism defined on an open, connected subset of a Euclidean space to be globally one-to-one and, at the same time, for the image to be convex. Among the applications we give a practical sufficiency test for invertibility for twice differentiable local diffeomorphisms defined on a ball.
Druh dokumentu: Article
Popis súboru: application/xml
Jazyk: English
ISSN: 1755-1633
0004-9727
DOI: 10.1017/s000497270001649x
Prístupová URL adresa: https://www.cambridge.org/core/services/aop-cambridge-core/content/view/112B04BBEA1054B0802D6A6740DCE407/S000497270001649Xa.pdf/div-class-title-local-homeo-and-diffeomorphisms-invertibility-and-convex-image-div.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/112B04BBEA1054B0802D6A6740DCE407/S000497270001649Xa.pdf/div-class-title-local-homeo-and-diffeomorphisms-invertibility-and-convex-image-div.pdf
https://iris.univr.it/handle/11562/393335
https://www.cambridge.org/core/journals/bulletin-of-the-australian-mathematical-society/article/local-homeo-and-diffeomorphisms-invertibility-and-convex-image/112B04BBEA1054B0802D6A6740DCE407
https://hdl.handle.net/11562/393335
https://hdl.handle.net/11390/686377
Rights: Cambridge Core User Agreement
Prístupové číslo: edsair.doi.dedup.....5a8f8b00a2dba0aa4a229d319595ce6c
Databáza: OpenAIRE
Popis
Abstrakt:We prove a necessary and sufficient condition for a local homeomorphism defined on an open, connected subset of a Euclidean space to be globally one-to-one and, at the same time, for the image to be convex. Among the applications we give a practical sufficiency test for invertibility for twice differentiable local diffeomorphisms defined on a ball.
ISSN:17551633
00049727
DOI:10.1017/s000497270001649x