On the module of effective relations of a standard algebra

Gespeichert in:
Bibliographische Detailangaben
Titel: On the module of effective relations of a standard algebra
Autoren: Planas Vilanova, Francesc d'Assís
Weitere Verfasser: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I, Universitat Politècnica de Catalunya. EGSA - Equacions Diferencials, Geometria, Sistemes Dinàmics i de Control, i Aplicacions
Quelle: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Verlagsinformationen: Cambridge University Press (CUP), 1998.
Publikationsjahr: 1998
Schlagwörter: Koszul homology, Teoria d', polynomial ring, Homologia, Commutative rings, André-Quillen homology, Homologia, Teoria d', Anells commutatius, module of effective \(n\)-relations, 01 natural sciences, Graded rings, Standard Algebra, (Co)homology of commutative rings and algebras (e.g., Hochschild, André-Quillen, cyclic, dihedral, etc.), Polynomial rings and ideals, rings of integer-valued polynomials, Classificació AMS::13 Commutative rings and algebras::13D Homological methods, Algebra, Effective Relations, graded algebra, 13 Commutative rings and algebras::13A General commutative ring theory [Classificació AMS], Homological, Classificació AMS::13 Commutative rings and algebras::13A General commutative ring theory, 0101 mathematics, 13 Commutative rings and algebras::13D Homological methods [Classificació AMS], Algebra, Homological
Beschreibung: Let \(A\) be a commutative ring. The author denotes by a standard \(A\)-algebra a commutative graded \(A\)-algebra \(U=\bigoplus_{n\geq 0}U_n\) with \(U_0= A\) and such that \(U\) is generated as an \(A\)-algebra by the elements of \(U_1\). Let \(\underline x\) be a (possibly infinite) set of generators of the \(A\)-module \(U_1\). Let \(V=A[\underline t]\) be the polynomial ring with as many variables \(\underline t\) (of degree one) as \(\underline x\) has elements and let \(f:V\to U\) be the graded free presentation of \(U\) induced by the \(\underline x\). For \(n\geq 2\), the \(A\)-module \(E(U)_n=\ker f_n/V_1\cdot\ker f_{n-1}\) is called the module of effective \(n\)-relations. In this paper the author gives two descriptions of the \(A\)-module of effective \(n\)-relations. In terms of André-Quillen homology it is \(E(U)_n=H_1(A,U,A_n)\). It turns out that this module does not depend on the chosen \(\underline x\). In terms of Koszul homology the author proves that \(E(U)_n=H_1(\underline x;U)_n\). Using this characterizations, there are established some properties on the module of effective \(n\)-relations and the relation type of a graded algebra. Finally, the author characterizes, in terms of a system of generators, which ideals have module of effective \(n\)-relations zero.
Publikationsart: Article
Other literature type
Dateibeschreibung: application/pdf; application/xml
Sprache: English
ISSN: 1469-8064
0305-0041
DOI: 10.1017/s030500419800262x
Zugangs-URL: https://upcommons.upc.edu/bitstream/2117/908/1/9604planas.pdf
http://hdl.handle.net/2117/908
https://hdl.handle.net/2117/908
https://zbmath.org/1207977
https://doi.org/10.1017/s030500419800262x
https://ui.adsabs.harvard.edu/abs/1998MPCPS.124..215P/abstract
https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/article/on-the-module-of-effective-relations-of-a-standard-algebra/4B2F385DA262897B6B32AAEE59212D07
Rights: Cambridge Core User Agreement
CC BY NC ND
Dokumentencode: edsair.doi.dedup.....3fd0945e7c2c49be80a2b59a552e21bf
Datenbank: OpenAIRE
Beschreibung
Abstract:Let \(A\) be a commutative ring. The author denotes by a standard \(A\)-algebra a commutative graded \(A\)-algebra \(U=\bigoplus_{n\geq 0}U_n\) with \(U_0= A\) and such that \(U\) is generated as an \(A\)-algebra by the elements of \(U_1\). Let \(\underline x\) be a (possibly infinite) set of generators of the \(A\)-module \(U_1\). Let \(V=A[\underline t]\) be the polynomial ring with as many variables \(\underline t\) (of degree one) as \(\underline x\) has elements and let \(f:V\to U\) be the graded free presentation of \(U\) induced by the \(\underline x\). For \(n\geq 2\), the \(A\)-module \(E(U)_n=\ker f_n/V_1\cdot\ker f_{n-1}\) is called the module of effective \(n\)-relations. In this paper the author gives two descriptions of the \(A\)-module of effective \(n\)-relations. In terms of André-Quillen homology it is \(E(U)_n=H_1(A,U,A_n)\). It turns out that this module does not depend on the chosen \(\underline x\). In terms of Koszul homology the author proves that \(E(U)_n=H_1(\underline x;U)_n\). Using this characterizations, there are established some properties on the module of effective \(n\)-relations and the relation type of a graded algebra. Finally, the author characterizes, in terms of a system of generators, which ideals have module of effective \(n\)-relations zero.
ISSN:14698064
03050041
DOI:10.1017/s030500419800262x