An Integrated Solution to Improve Performance of In-Memory Data Caching With an Efficient Item Retrieving Mechanism and a Near-Memory Accelerator

Uloženo v:
Podrobná bibliografie
Název: An Integrated Solution to Improve Performance of In-Memory Data Caching With an Efficient Item Retrieving Mechanism and a Near-Memory Accelerator
Autoři: Minkwan Kee, Chiwon Han, Gi-Ho Park
Zdroj: IEEE Access, Vol 11, Pp 78726-78736 (2023)
Informace o vydavateli: Institute of Electrical and Electronics Engineers (IEEE), 2023.
Rok vydání: 2023
Témata: linked list traversal acceleration, Database system, near memory processing, accelerator architectures, memory architecture, Electrical engineering. Electronics. Nuclear engineering, in-memory database, TK1-9971
Popis: This paper proposes both software and hardware mechanisms based on the near-memory processing (NMP) accelerator to improve the linked list traversal of the in-memory caching. From a software perspective, we propose a simple but an effective mechanism called ITEM JUMP to reduce the number of traversal on list iteration, and additionally, LSB-first parallel linked list traversal unit, which is an NMP-based hardware accelerator is proposed to improve parallel comparison performance of items. The evaluation result shows LSB-first parallel linked list traversal unit can achieve about 34 times better performance in item comparisons than the case where there is no hardware accelerator, and ITEM JUMP can reduce the number of items retrieved by up to 42%. The proposed NMP-based hardware accelerator also reduces the memory access overhead by 61%–83% compared to a simple parallel linked list traversal unit that simply loads and compares data as fast as possible.
Druh dokumentu: Article
ISSN: 2169-3536
DOI: 10.1109/access.2023.3292582
Přístupová URL adresa: https://doaj.org/article/a973790e77264e1f903b733a4c9a3a3b
Rights: CC BY NC ND
Přístupové číslo: edsair.doi.dedup.....2398c9a174c6fd1ff7db88a7531427a1
Databáze: OpenAIRE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://explore.openaire.eu/search/publication?articleId=doi_dedup___%3A%3A2398c9a174c6fd1ff7db88a7531427a1
    Name: EDS - OpenAIRE (s4221598)
    Category: fullText
    Text: View record at OpenAIRE
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsair&genre=article&issn=21693536&ISBN=&volume=11&issue=&date=20230101&spage=78726&pages=78726-78736&title=IEEE Access&atitle=An%20Integrated%20Solution%20to%20Improve%20Performance%20of%20In-Memory%20Data%20Caching%20With%20an%20Efficient%20Item%20Retrieving%20Mechanism%20and%20a%20Near-Memory%20Accelerator&aulast=Minkwan%20Kee&id=DOI:10.1109/access.2023.3292582
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Kee%20M
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsair
DbLabel: OpenAIRE
An: edsair.doi.dedup.....2398c9a174c6fd1ff7db88a7531427a1
RelevancyScore: 934
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 933.779541015625
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: An Integrated Solution to Improve Performance of In-Memory Data Caching With an Efficient Item Retrieving Mechanism and a Near-Memory Accelerator
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Minkwan+Kee%22">Minkwan Kee</searchLink><br /><searchLink fieldCode="AR" term="%22Chiwon+Han%22">Chiwon Han</searchLink><br /><searchLink fieldCode="AR" term="%22Gi-Ho+Park%22">Gi-Ho Park</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: IEEE Access, Vol 11, Pp 78726-78736 (2023)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Institute of Electrical and Electronics Engineers (IEEE), 2023.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2023
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22linked+list+traversal+acceleration%22">linked list traversal acceleration</searchLink><br /><searchLink fieldCode="DE" term="%22Database+system%22">Database system</searchLink><br /><searchLink fieldCode="DE" term="%22near+memory+processing%22">near memory processing</searchLink><br /><searchLink fieldCode="DE" term="%22accelerator+architectures%22">accelerator architectures</searchLink><br /><searchLink fieldCode="DE" term="%22memory+architecture%22">memory architecture</searchLink><br /><searchLink fieldCode="DE" term="%22Electrical+engineering%2E+Electronics%2E+Nuclear+engineering%22">Electrical engineering. Electronics. Nuclear engineering</searchLink><br /><searchLink fieldCode="DE" term="%22in-memory+database%22">in-memory database</searchLink><br /><searchLink fieldCode="DE" term="%22TK1-9971%22">TK1-9971</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: This paper proposes both software and hardware mechanisms based on the near-memory processing (NMP) accelerator to improve the linked list traversal of the in-memory caching. From a software perspective, we propose a simple but an effective mechanism called ITEM JUMP to reduce the number of traversal on list iteration, and additionally, LSB-first parallel linked list traversal unit, which is an NMP-based hardware accelerator is proposed to improve parallel comparison performance of items. The evaluation result shows LSB-first parallel linked list traversal unit can achieve about 34 times better performance in item comparisons than the case where there is no hardware accelerator, and ITEM JUMP can reduce the number of items retrieved by up to 42%. The proposed NMP-based hardware accelerator also reduces the memory access overhead by 61%–83% compared to a simple parallel linked list traversal unit that simply loads and compares data as fast as possible.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Article
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2169-3536
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1109/access.2023.3292582
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/a973790e77264e1f903b733a4c9a3a3b" linkWindow="_blank">https://doaj.org/article/a973790e77264e1f903b733a4c9a3a3b</link>
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: CC BY NC ND
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsair.doi.dedup.....2398c9a174c6fd1ff7db88a7531427a1
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.doi.dedup.....2398c9a174c6fd1ff7db88a7531427a1
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/access.2023.3292582
    Languages:
      – Text: Undetermined
    PhysicalDescription:
      Pagination:
        PageCount: 11
        StartPage: 78726
    Subjects:
      – SubjectFull: linked list traversal acceleration
        Type: general
      – SubjectFull: Database system
        Type: general
      – SubjectFull: near memory processing
        Type: general
      – SubjectFull: accelerator architectures
        Type: general
      – SubjectFull: memory architecture
        Type: general
      – SubjectFull: Electrical engineering. Electronics. Nuclear engineering
        Type: general
      – SubjectFull: in-memory database
        Type: general
      – SubjectFull: TK1-9971
        Type: general
    Titles:
      – TitleFull: An Integrated Solution to Improve Performance of In-Memory Data Caching With an Efficient Item Retrieving Mechanism and a Near-Memory Accelerator
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Minkwan Kee
      – PersonEntity:
          Name:
            NameFull: Chiwon Han
      – PersonEntity:
          Name:
            NameFull: Gi-Ho Park
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2023
          Identifiers:
            – Type: issn-print
              Value: 21693536
            – Type: issn-locals
              Value: edsair
            – Type: issn-locals
              Value: edsairFT
          Numbering:
            – Type: volume
              Value: 11
          Titles:
            – TitleFull: IEEE Access
              Type: main
ResultId 1