AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM WITH A BOUND ADJUSTMENT STRATEGY FOR SOLVING NONLINEAR PARAMETER IDENTIFICATION PROBLEMS

Saved in:
Bibliographic Details
Title: AN ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM WITH A BOUND ADJUSTMENT STRATEGY FOR SOLVING NONLINEAR PARAMETER IDENTIFICATION PROBLEMS
Authors: Watchara Wongsa, Pikul Puphasuk, Jeerayut Wetweerapong
Source: Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Środowiska, Vol 14, Iss 2 (2024)
Publisher Information: Politechnika Lubelska, 2024.
Publication Year: 2024
Subject Terms: Environmental sciences, parameter identification, bound adjustment strategy, Environmental engineering, GE1-350, TA170-171, differential evolution algorithm
Description: Real-world parameter identification problems require determining the bounds that cover the unknown solutions. This paper presents an adaptive differential evolution algorithm with a bound adjustment strategy (ADEBAS) for solving nonlinear parameter identification problems. The adjustment strategy detects the parameter-bound violations of mutant vectors during the evolution process and gradually extends the bounds. The algorithm adaptively uses two mutation strategies and two ranges of crossover rate to balance the population diversity and convergence speed. Experimental results show that ADEBAS can solve 24 nonlinear regression tasks from the National Institute of Standards and Technology benchmark with accurate estimation and reliability. It also outperforms the compared methods on real-world parameter identification problems.
Document Type: Article
ISSN: 2391-6761
2083-0157
DOI: 10.35784/iapgos.5684
Access URL: https://doaj.org/article/7b0d1af269904d4599ac7abff797eaaa
Rights: CC BY
Accession Number: edsair.doi.dedup.....09cf4a1a7e30e34fe57dec1898fd0c20
Database: OpenAIRE
Description
Abstract:Real-world parameter identification problems require determining the bounds that cover the unknown solutions. This paper presents an adaptive differential evolution algorithm with a bound adjustment strategy (ADEBAS) for solving nonlinear parameter identification problems. The adjustment strategy detects the parameter-bound violations of mutant vectors during the evolution process and gradually extends the bounds. The algorithm adaptively uses two mutation strategies and two ranges of crossover rate to balance the population diversity and convergence speed. Experimental results show that ADEBAS can solve 24 nonlinear regression tasks from the National Institute of Standards and Technology benchmark with accurate estimation and reliability. It also outperforms the compared methods on real-world parameter identification problems.
ISSN:23916761
20830157
DOI:10.35784/iapgos.5684