Liquid plug formation in an airway closure model

Uložené v:
Podrobná bibliografia
Názov: Liquid plug formation in an airway closure model
Autori: Romanò, Francesco, Fujioka, H., Muradoglu, M., Grotberg, J. B.
Prispievatelia: Administrateur Ensam, Compte De Service, Laboratoire de Mécanique des Fluides de Lille (LMFL), Muradoğlu, Metin (ORCID 0000-0002-1758-5418 & YÖK ID 46561), Romano, Francesco, Fujioka, Hiroshi, Grotberg, James B., College of Engineering, Department of Mechanical Engineering
Zdroj: Physical Review Fluids
Informácie o vydavateľovi: American Physical Society (APS), 2019.
Rok vydania: 2019
Predmety: Sciences de l'ingénieur: Mécanique: Mécanique des fluides, Fluid-elastic instabilities, Capillary instability, Rayleigh instability, Pulmonary surfactant, Flow-fields, Propagation, stability, Mechanics, Rupture, Breakup, [SPI.MECA.MEFL] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph], Capillary waves, 01 natural sciences, Fluids and plasmas, Sciences du vivant: ingénierie bio-médicale, [SPI.MECA.BIOM] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Biomechanics [physics.med-ph], 0103 physical sciences, Biological fluid dynamics, Thin fluid films, [SDV.IB] Life Sciences [q-bio]/Bioengineering, Physics, Physique: Dynamique des Fluides, Sciences de l'ingénieur: Mécanique: Biomécanique, [PHYS.PHYS.PHYS-FLU-DYN] Physics [physics]/Physics [physics]/Fluid Dynamics [physics.flu-dyn], Surface tension effects, Multiphase flows, Flow instability
Popis: The closure of a human lung airway is modeled as an instability of a two-phase flow in a pipe coated internally with a Newtonian liquid. For a thick enough coating, the Plateau-Rayleigh instability creates a liquid plug which blocks the airway, halting distal gas exchange. Owing to a bi-frontal plug growth, this airway closure flow induces high stress levels on the wall, which is the location of airway epithelial cells. A parametric numerical study is carried out simulating relevant conditions for human lungs, either in ordinary or pathological situations. Our simulations can represent the physical process from pre- to post-coalescence phases. Previous studies have been limited to pre-coalescence only. The topological change during coalescence induces a high level of stress and stress gradients on the epithelial cells, which are large enough to damage them, causing sub-lethal or lethal responses. We find that post-coalescence wall stresses can be in the range of 300% to 600% greater than pre-coalescence values, so introduce a new important source of mechanical perturbation to the cells.
Druh dokumentu: Article
Other literature type
Popis súboru: application/pdf; pdf
Jazyk: English
ISSN: 2469-990X
DOI: 10.1103/physrevfluids.4.093103
Prístupová URL adresa: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074672
https://pubmed.ncbi.nlm.nih.gov/33907725
https://link.aps.org/doi/10.1103/PhysRevFluids.4.093103
https://europepmc.org/article/PMC/PMC8074672
https://hal.archives-ouvertes.fr/hal-02422996/document
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8074672
https://hal.archives-ouvertes.fr/hal-02422996
https://sam.ensam.eu/handle/10985/17695
https://hal.science/hal-02422996v1
http://hdl.handle.net/10985/17695
http://cdm21054.contentdm.oclc.org/cdm/ref/collection/IR/id/8503
Rights: APS Licenses for Journal Article Re-use
Prístupové číslo: edsair.doi.dedup.....03732cfeb3c6d8e9aa819b92dd1a858e
Databáza: OpenAIRE
Popis
Abstrakt:The closure of a human lung airway is modeled as an instability of a two-phase flow in a pipe coated internally with a Newtonian liquid. For a thick enough coating, the Plateau-Rayleigh instability creates a liquid plug which blocks the airway, halting distal gas exchange. Owing to a bi-frontal plug growth, this airway closure flow induces high stress levels on the wall, which is the location of airway epithelial cells. A parametric numerical study is carried out simulating relevant conditions for human lungs, either in ordinary or pathological situations. Our simulations can represent the physical process from pre- to post-coalescence phases. Previous studies have been limited to pre-coalescence only. The topological change during coalescence induces a high level of stress and stress gradients on the epithelial cells, which are large enough to damage them, causing sub-lethal or lethal responses. We find that post-coalescence wall stresses can be in the range of 300% to 600% greater than pre-coalescence values, so introduce a new important source of mechanical perturbation to the cells.
ISSN:2469990X
DOI:10.1103/physrevfluids.4.093103