Evaluate Fuzzy Riemann Integrals Using the Monte Carlo Method: Evaluate fuzzy Riemann integrals using the Monte Carlo method

Uloženo v:
Podrobná bibliografie
Název: Evaluate Fuzzy Riemann Integrals Using the Monte Carlo Method: Evaluate fuzzy Riemann integrals using the Monte Carlo method
Autoři: Wu, HC
Přispěvatelé: 管理學院:資訊管理學系, Wu, HC
Zdroj: Journal of Mathematical Analysis and Applications. 264:324-343
Informace o vydavateli: Elsevier BV, 2001.
Rok vydání: 2001
Témata: (improper) fuzzy Riemann integrals, convergence, strong law of large numbers, Fuzzy measure theory, Applied Mathematics, Fuzzy real analysis, mathematical programming problems, Monte Carlo methods, fuzzy numbers, 02 engineering and technology, Numerical quadrature and cubature formulas, Monte Carlo method, 0202 electrical engineering, electronic engineering, information engineering, Analysis, fuzzy Riemann integral
Popis: Consider a function \(\widetilde f\) defined on the real line whose values are fuzzy numbers. The fuzzy Riemann integral of \(\widetilde f\) is a fuzzy set whose membership function is \(\xi(r)= \sup_{0\leq\alpha\leq 1}\alpha 1_{A_\alpha}(r)\), where \[ A_\alpha= \Biggl[\int^b_a\widetilde f^L_\alpha(x) dx,\;\int^b_a\widetilde f^R_\alpha(x) dx\Biggr] \] and \([\widetilde f^L_\alpha(x),\widetilde f^R_\alpha(x)]\) is the \(\alpha\)-cut of \(\widetilde f(x)\). After surveying several properties of these integrals, the author shows how to compute them numerically using the Monte Carlo method. The convergence properties are derived using the strong law of large numbers for fuzzy random variables. The membership function of the integral is then evaluated by transforming it into a standard optimization problem.
Druh dokumentu: Article
Popis souboru: application/xml; 104 bytes; text/html
Jazyk: English
ISSN: 0022-247X
DOI: 10.1006/jmaa.2001.7659
Přístupová URL adresa: https://zbmath.org/1716535
https://doi.org/10.1006/jmaa.2001.7659
https://www.sciencedirect.com/science/article/pii/S0022247X01976590
http://www.sciencedirect.com/science/article/pii/S0022247X01976590
https://core.ac.uk/display/82110980
Rights: Elsevier Non-Commercial
Přístupové číslo: edsair.doi.dedup.....0085f11e96d9628f73ed237a46a3ae6f
Databáze: OpenAIRE
Popis
Abstrakt:Consider a function \(\widetilde f\) defined on the real line whose values are fuzzy numbers. The fuzzy Riemann integral of \(\widetilde f\) is a fuzzy set whose membership function is \(\xi(r)= \sup_{0\leq\alpha\leq 1}\alpha 1_{A_\alpha}(r)\), where \[ A_\alpha= \Biggl[\int^b_a\widetilde f^L_\alpha(x) dx,\;\int^b_a\widetilde f^R_\alpha(x) dx\Biggr] \] and \([\widetilde f^L_\alpha(x),\widetilde f^R_\alpha(x)]\) is the \(\alpha\)-cut of \(\widetilde f(x)\). After surveying several properties of these integrals, the author shows how to compute them numerically using the Monte Carlo method. The convergence properties are derived using the strong law of large numbers for fuzzy random variables. The membership function of the integral is then evaluated by transforming it into a standard optimization problem.
ISSN:0022247X
DOI:10.1006/jmaa.2001.7659