K-Hyperparameter Tuning in High-Dimensional Space Clustering: Solving Smooth Elbow Challenges Using an Ensemble Based Technique of a Self-Adapting Autoencoder and Internal Validation Indexes

Gespeichert in:
Bibliographische Detailangaben
Titel: K-Hyperparameter Tuning in High-Dimensional Space Clustering: Solving Smooth Elbow Challenges Using an Ensemble Based Technique of a Self-Adapting Autoencoder and Internal Validation Indexes
Autoren: Rufus Gikera, Jonathan Mwaura, Elizaphan Muuro, Shadrack Mambo
Quelle: Journal on Artificial Intelligence. 5:75-112
Verlagsinformationen: Tech Science Press, 2023.
Publikationsjahr: 2023
Publikationsart: Article
Sprache: English
ISSN: 2579-003X
DOI: 10.32604/jai.2023.043229
Dokumentencode: edsair.doi...........7d5b8584a689bb94c4ed32a7ceb3b29b
Datenbank: OpenAIRE