Updated-Absolute Expected Value Solution Approach for multistage stochastic programming�problems

Uloženo v:
Podrobná bibliografie
Název: Updated-Absolute Expected Value Solution Approach for multistage stochastic programming�problems
Autoři: Yasuhiro Shoji, Selen Cremaschi
Zdroj: Systems and Control Transactions. 4:1275-1280
Informace o vydavateli: PSE Press, 2025.
Rok vydání: 2025
Popis: This paper introduces the Updated Absolute Expected Value Solution, U-AEEV, a heuristic for solving multi-stage stochastic programming (MSSP) problems with type 2 endogenous uncertainty. U-AEEV is an evolution of the Absolute Expected Value Solution, AEEV [1]. This paper aims to show how U-AEEV overcomes the drawbacks of AEEV and performs better than AEEV. To demonstrate the performance of U-AEEV, we solve 6 MSSP problems with type 2 endogenous uncertainty and compare the solutions and computational resource requirements.
Druh dokumentu: Article
ISSN: 2818-4734
DOI: 10.69997/sct.188893
Přístupové číslo: edsair.doi...........762f37a5fd80c97a36fe7fd5ff1e4e31
Databáze: OpenAIRE
Popis
Abstrakt:This paper introduces the Updated Absolute Expected Value Solution, U-AEEV, a heuristic for solving multi-stage stochastic programming (MSSP) problems with type 2 endogenous uncertainty. U-AEEV is an evolution of the Absolute Expected Value Solution, AEEV [1]. This paper aims to show how U-AEEV overcomes the drawbacks of AEEV and performs better than AEEV. To demonstrate the performance of U-AEEV, we solve 6 MSSP problems with type 2 endogenous uncertainty and compare the solutions and computational resource requirements.
ISSN:28184734
DOI:10.69997/sct.188893