Human-related anomalous event detection via spatial-temporal graph convolutional autoencoder with embedded long short-term memory network

Gespeichert in:
Bibliographische Detailangaben
Titel: Human-related anomalous event detection via spatial-temporal graph convolutional autoencoder with embedded long short-term memory network
Autoren: Nanjun Li, Faliang Chang, Chunsheng Liu
Quelle: Neurocomputing. 490:482-494
Verlagsinformationen: Elsevier BV, 2022.
Publikationsjahr: 2022
Schlagwörter: 03 medical and health sciences, 0302 clinical medicine, 0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Publikationsart: Article
Sprache: English
ISSN: 0925-2312
DOI: 10.1016/j.neucom.2021.12.023
Rights: Elsevier TDM
Dokumentencode: edsair.doi...........6f5267e7fee73583e685e0efd67b3ead
Datenbank: OpenAIRE
Beschreibung
ISSN:09252312
DOI:10.1016/j.neucom.2021.12.023