СТРУКТУРНЫЕ СВОЙСТВА МУЛЬТИПЛЕКСНОЙ СЕТИ АВТОРОВ НАУЧНОГО ЖУРНАЛА

Saved in:
Bibliographic Details
Title: СТРУКТУРНЫЕ СВОЙСТВА МУЛЬТИПЛЕКСНОЙ СЕТИ АВТОРОВ НАУЧНОГО ЖУРНАЛА
Publisher Information: Проблемы информатики, 2025.
Publication Year: 2025
Subject Terms: мультиплексные сети, scientific co-authorship, citation, data analysis, библиометрия, multiplex networks, actor centrality, комплексные системы, центральность акторов, анализ данных, научное соавторство, цитирование, bibliometrics, кластеризация, complex systems, clustering
Description: A multilayer network — of which multiplex network is particular case — is a network made up by multiple layers, each of which represents a certain binary relationship between network actors. An example of such a system is a social network in which actors are interconnected by several types of social relations. Bibliographic information on a set of publications of scientific journals can be a source for constructing and studying multilayer networks of various types. Examples include multiplex networks, where different layers reflect the collaboration of authors in different scientific sections of the same scientific field [1]; two-layer networks of authors who are co-authors in the first layer and cite each other in the second [2]; three-layer co-authorship/citation/keyword networks, where the third layer reflects the use of the same keywords by authors in their works [3]. This paper contains the results of the analysis of the parameters of the weighted multiplex network built on the basis of real data extracted from a long-term archive of articles of the scientific journal “Sakharnyi Diabet”. The network consists of two layers: scientific co-authorship and citation. The nodes of the network are the authors of the journal articles. The first layer is the co-authorship graph, the vertices correspond to the authors, the connection between two vertices is established if the corresponding authors have joint publications, the edge weight is equal to the number of publications. The second layer is the directed citation graph, the edge between the citing and cited is established if the reference list of the article in which the citing author participates contains a link to an article from the journal in which the cited author participates. The details of the construction and the parameters of the layers are given in the work [8]. For multilayer networks structural properties of single networks must be modified to take into account their multilayer nature and to distinguish links. In this paper we investigate the set of basic metrics that characterize the structural properties of multiplex network and are the extension of classical network metrics to the case of multiplexes [6, 7]. These include centrality measures which allow ranking nodes and node clustering which reflect the tendency of nodes to form triangles. A number of methods for modifying parameter are considered. One way is a transformation of a multilayer network into a single-layer network for which the corresponding parameters (for example, the degree 𝐾𝑖) are calculated. Aggregation of the parameter values calculated separately for each layer (︁ 𝐶𝑙𝑦 ℳ )︁ gives an idea of the features of the node’s connections in the layers. And consideration of several layers simultaneously, as for example when determining the clustering coefficient 𝐶𝑖,1, allows us to identify the interconnectedness of the structures in which the node is involved. The results of parameters calculating and analysis are presented. The article is a continuation of the work [8].
Ряд социальных комплексных систем допускает формальное представление в виде мультиплексной сети, в которой множество однородных акторов объединены внутренними и межслойными отношениями. Каждый слой представляет свой тип бинарных отношений. В статье представлен метод моделирования реальной двухслойной взвешенной сети авторов научного журнала. Приведены формальные определения основных параметров, характеризующих топологию мультиплексной сети. Выполнен вычислительный эксперимент, иллюстрирующий метод моделирования сети авторов научного журнала, измерены значения параметров, определяющих ее структуру.
Document Type: Research
DOI: 10.24412/2073-0667-2025-2-5-18
Rights: CC BY
Accession Number: edsair.doi...........49f9565b83c02ff8bbff4dde4c7d9e36
Database: OpenAIRE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsair
DbLabel: OpenAIRE
An: edsair.doi...........49f9565b83c02ff8bbff4dde4c7d9e36
RelevancyScore: 887
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 886.736389160156
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: СТРУКТУРНЫЕ СВОЙСТВА МУЛЬТИПЛЕКСНОЙ СЕТИ АВТОРОВ НАУЧНОГО ЖУРНАЛА
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Проблемы информатики, 2025.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2025
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22мультиплексные+сети%22">мультиплексные сети</searchLink><br /><searchLink fieldCode="DE" term="%22scientific+co-authorship%22">scientific co-authorship</searchLink><br /><searchLink fieldCode="DE" term="%22citation%22">citation</searchLink><br /><searchLink fieldCode="DE" term="%22data+analysis%22">data analysis</searchLink><br /><searchLink fieldCode="DE" term="%22библиометрия%22">библиометрия</searchLink><br /><searchLink fieldCode="DE" term="%22multiplex+networks%22">multiplex networks</searchLink><br /><searchLink fieldCode="DE" term="%22actor+centrality%22">actor centrality</searchLink><br /><searchLink fieldCode="DE" term="%22комплексные+системы%22">комплексные системы</searchLink><br /><searchLink fieldCode="DE" term="%22центральность+акторов%22">центральность акторов</searchLink><br /><searchLink fieldCode="DE" term="%22анализ+данных%22">анализ данных</searchLink><br /><searchLink fieldCode="DE" term="%22научное+соавторство%22">научное соавторство</searchLink><br /><searchLink fieldCode="DE" term="%22цитирование%22">цитирование</searchLink><br /><searchLink fieldCode="DE" term="%22bibliometrics%22">bibliometrics</searchLink><br /><searchLink fieldCode="DE" term="%22кластеризация%22">кластеризация</searchLink><br /><searchLink fieldCode="DE" term="%22complex+systems%22">complex systems</searchLink><br /><searchLink fieldCode="DE" term="%22clustering%22">clustering</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: A multilayer network — of which multiplex network is particular case — is a network made up by multiple layers, each of which represents a certain binary relationship between network actors. An example of such a system is a social network in which actors are interconnected by several types of social relations. Bibliographic information on a set of publications of scientific journals can be a source for constructing and studying multilayer networks of various types. Examples include multiplex networks, where different layers reflect the collaboration of authors in different scientific sections of the same scientific field [1]; two-layer networks of authors who are co-authors in the first layer and cite each other in the second [2]; three-layer co-authorship/citation/keyword networks, where the third layer reflects the use of the same keywords by authors in their works [3]. This paper contains the results of the analysis of the parameters of the weighted multiplex network built on the basis of real data extracted from a long-term archive of articles of the scientific journal “Sakharnyi Diabet”. The network consists of two layers: scientific co-authorship and citation. The nodes of the network are the authors of the journal articles. The first layer is the co-authorship graph, the vertices correspond to the authors, the connection between two vertices is established if the corresponding authors have joint publications, the edge weight is equal to the number of publications. The second layer is the directed citation graph, the edge between the citing and cited is established if the reference list of the article in which the citing author participates contains a link to an article from the journal in which the cited author participates. The details of the construction and the parameters of the layers are given in the work [8]. For multilayer networks structural properties of single networks must be modified to take into account their multilayer nature and to distinguish links. In this paper we investigate the set of basic metrics that characterize the structural properties of multiplex network and are the extension of classical network metrics to the case of multiplexes [6, 7]. These include centrality measures which allow ranking nodes and node clustering which reflect the tendency of nodes to form triangles. A number of methods for modifying parameter are considered. One way is a transformation of a multilayer network into a single-layer network for which the corresponding parameters (for example, the degree 𝐾𝑖) are calculated. Aggregation of the parameter values calculated separately for each layer (︁ 𝐶𝑙𝑦 ℳ )︁ gives an idea of the features of the node’s connections in the layers. And consideration of several layers simultaneously, as for example when determining the clustering coefficient 𝐶𝑖,1, allows us to identify the interconnectedness of the structures in which the node is involved. The results of parameters calculating and analysis are presented. The article is a continuation of the work [8].<br />Ряд социальных комплексных систем допускает формальное представление в виде мультиплексной сети, в которой множество однородных акторов объединены внутренними и межслойными отношениями. Каждый слой представляет свой тип бинарных отношений. В статье представлен метод моделирования реальной двухслойной взвешенной сети авторов научного журнала. Приведены формальные определения основных параметров, характеризующих топологию мультиплексной сети. Выполнен вычислительный эксперимент, иллюстрирующий метод моделирования сети авторов научного журнала, измерены значения параметров, определяющих ее структуру.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Research
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.24412/2073-0667-2025-2-5-18
– Name: Copyright
  Label: Rights
  Group: Cpyrght
  Data: CC BY
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsair.doi...........49f9565b83c02ff8bbff4dde4c7d9e36
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.doi...........49f9565b83c02ff8bbff4dde4c7d9e36
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.24412/2073-0667-2025-2-5-18
    Languages:
      – Text: Undetermined
    Subjects:
      – SubjectFull: мультиплексные сети
        Type: general
      – SubjectFull: scientific co-authorship
        Type: general
      – SubjectFull: citation
        Type: general
      – SubjectFull: data analysis
        Type: general
      – SubjectFull: библиометрия
        Type: general
      – SubjectFull: multiplex networks
        Type: general
      – SubjectFull: actor centrality
        Type: general
      – SubjectFull: комплексные системы
        Type: general
      – SubjectFull: центральность акторов
        Type: general
      – SubjectFull: анализ данных
        Type: general
      – SubjectFull: научное соавторство
        Type: general
      – SubjectFull: цитирование
        Type: general
      – SubjectFull: bibliometrics
        Type: general
      – SubjectFull: кластеризация
        Type: general
      – SubjectFull: complex systems
        Type: general
      – SubjectFull: clustering
        Type: general
    Titles:
      – TitleFull: СТРУКТУРНЫЕ СВОЙСТВА МУЛЬТИПЛЕКСНОЙ СЕТИ АВТОРОВ НАУЧНОГО ЖУРНАЛА
        Type: main
  BibRelationships:
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-locals
              Value: edsair
ResultId 1