A Stochastic Programming Model for the Thermal Optimal Day-Ahead Bid Problem with Physical Futures Contracts

Uložené v:
Podrobná bibliografia
Názov: A Stochastic Programming Model for the Thermal Optimal Day-Ahead Bid Problem with Physical Futures Contracts
Autori: Corchero García, Cristina, Heredia, F.-Javier (Francisco Javier)
Prispievatelia: Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa, Universitat Politècnica de Catalunya. GNOM - Grup d'Optimització Numèrica i Modelització
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Recercat. Dipósit de la Recerca de Catalunya
Universitat Jaume I
Informácie o vydavateľovi: 2009.
Rok vydania: 2009
Predmety: Classificació AMS::90 Operations research, Optimal bid, Programming (Mathematics), Matemàtiques i estadística::Investigació operativa::Programació matemàtica [Àrees temàtiques de la UPC], mathematical programming::90C Mathematical programming, Classificació INSPEC::Optimisation::Mathematical programming::Stochastic programming, Stochastic programming, Àrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Optimització, 90 Operations research, mathematical programming::90C Mathematical programming [Classificació AMS], Optimisation::Mathematical programming::Stochastic programming [Classificació INSPEC], Classificació AMS::90 Operations research, mathematical programming::90C Mathematical programming, Classificació AMS::90 Operations research, mathematical programming::90B Operations research and management science, mathematical programming::90B Operations research and management science, Futures contracts, 90 Operations research, mathematical programming::90B Operations research and management science [Classificació AMS], Programació (Matemàtica), Àrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa::Programació matemàtica, Electricity day-ahead market, Matemàtiques i estadística::Investigació operativa::Optimització [Àrees temàtiques de la UPC]
Popis: The reorganization of the electricity industry in Spain completed a new step with the start-up of the Derivatives Market. One main characteristic of MIBEL’s Derivatives Market is the existence of physical futures contracts; they imply the obligation to settle physically the energy. The market regulation establishes the mechanism for including those physical futures in the day-ahead bidding of the Generation Companies. The goal of this work is to optimize coordination between physical futures contracts and the Day-Ahead bidding which follow this regulation. We propose a stochastic quadratic mixed-integer programming model which maximizes the expected profits, taking into account futures contracts settlement. The model gives the simultaneous optimization for the Day-Ahead Market bidding strategy and power planning production (unit commitment) for the thermal units of a price-taker Generation Company. The uncertainty of the day-ahead market price is included in the stochastic model through a set of scenarios. Implementation details and some first computational experiences for small real cases are presented.
Druh dokumentu: Report
Popis súboru: application/pdf
Jazyk: English
Prístupová URL adresa: https://hdl.handle.net/2117/2795
http://hdl.handle.net/2117/2795
Rights: CC BY NC ND
Prístupové číslo: edsair.dedup.wf.002..f9dd5311b762db8b93c16bebbf91cf3f
Databáza: OpenAIRE
Popis
Abstrakt:The reorganization of the electricity industry in Spain completed a new step with the start-up of the Derivatives Market. One main characteristic of MIBEL’s Derivatives Market is the existence of physical futures contracts; they imply the obligation to settle physically the energy. The market regulation establishes the mechanism for including those physical futures in the day-ahead bidding of the Generation Companies. The goal of this work is to optimize coordination between physical futures contracts and the Day-Ahead bidding which follow this regulation. We propose a stochastic quadratic mixed-integer programming model which maximizes the expected profits, taking into account futures contracts settlement. The model gives the simultaneous optimization for the Day-Ahead Market bidding strategy and power planning production (unit commitment) for the thermal units of a price-taker Generation Company. The uncertainty of the day-ahead market price is included in the stochastic model through a set of scenarios. Implementation details and some first computational experiences for small real cases are presented.