Solving a possibilistic linear program through compromise programming

Uloženo v:
Podrobná bibliografie
Název: Solving a possibilistic linear program through compromise programming
Autoři: Jiménez López, Mariano, Rodríguez Uría, Ma. Victoria, Arenas Parra, Mar, Bilbao Terol, Amelia
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Mathware & soft computing; 2000: Vol.: 7 Núm.: 2-3
Informace o vydavateli: Universitat Politècnica de Catalunya. Secció de Matemàtiques i Informàtica, 2000.
Rok vydání: 2000
Témata: Classificació AMS::90 Operations research, mathematical programming::90C Mathematical programming, compromise programming, possibility distributions, linear programming, \(\alpha\)-degree feasible solutions, 90 Operations research, mathematical programming::90C Mathematical programming [Classificació AMS], fuzzy number ranking, Classificació AMS::90 Operations research, mathematical programming::90C Mathematical programming, fuzzy parameters, Fuzzy numbers ranking, expected interval, expected value, preference relationship of fuzzy numbers, Linear programming, Programació (Matemàtica), Possibility distribution, Fuzzy and other nonstochastic uncertainty mathematical programming, Multi-objective and goal programming, Compromise programming, Expected interval, Expected value, Sistemes experts (Informàtica)
Popis: In this paper we propose a method to solve a linear programming problem involving fuzzy parameters whose possibility distributions are given by fuzzy numbers. To address the above problem we have used a preference relationship of fuzzy numbers that leads us to a solving method that produces the so-called $\alpha$-degree feasible solutions. It must be pointed out that the final solution of the problem depends critically on this degree of feasibility, which is in conflict with the optimal value of the objective function. Then DM faces a bi-objective problem that we will solve through a Compromise Programming approach, whose solution lets the Decision-Maker express his own preferences about feasibility versus optimality. Our proposed method will be illustrated by a numerical example
Druh dokumentu: Article
Popis souboru: application/pdf; application/xml; text/html
Jazyk: English
Přístupová URL adresa: https://hdl.handle.net/2099/3575
http://hdl.handle.net/2099/3575
https://zbmath.org/1648847
http://www.raco.cat/index.php/Mathware/article/view/84816
Rights: CC BY NC ND
Přístupové číslo: edsair.dedup.wf.002..f859e64ab6fefef1765817fbf39d4b62
Databáze: OpenAIRE
Popis
Abstrakt:In this paper we propose a method to solve a linear programming problem involving fuzzy parameters whose possibility distributions are given by fuzzy numbers. To address the above problem we have used a preference relationship of fuzzy numbers that leads us to a solving method that produces the so-called $\alpha$-degree feasible solutions. It must be pointed out that the final solution of the problem depends critically on this degree of feasibility, which is in conflict with the optimal value of the objective function. Then DM faces a bi-objective problem that we will solve through a Compromise Programming approach, whose solution lets the Decision-Maker express his own preferences about feasibility versus optimality. Our proposed method will be illustrated by a numerical example