On the optimism correction of the area under the receiver operating characteristic curve in logistic prediction models

Uložené v:
Podrobná bibliografia
Názov: On the optimism correction of the area under the receiver operating characteristic curve in logistic prediction models
Autori: Iparragirre, Amaia, Barrio, Irantzu, Rodríguez-Álvarez, María Xosé
Zdroj: SORT-Statistics and Operations Research Transactions; 2019: Vol.: 43 Núm.: 1 January-June; p. 145-162
oai:raco.cat:article/356185
Repositori Institucional de la Universitat Rovira i Virgili
instname
Dipòsit Digital de Documents de la UAB
Universitat Autònoma de Barcelona
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Informácie o vydavateľovi: Universitat Rovira i Virgili, 2019.
Rok vydania: 2019
Predmety: validation, Classificació AMS::62 Statistics::62J Linear inference, logistic regression, area under the receiver operating characteristic curve, Classificació AMS::62 Statistics::62J Linear inference, regression, Logistic regression, Prediction models, Bootstrap, Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica, Matemàtiques i estadística::Estadística matemàtica [Àrees temàtiques de la UPC], 62 Statistics::62J Linear inference, regression [Classificació AMS], Validation, Area under the receiver operating characteristic curve, regression, 62J99, bootstrap, Prediction models, logistic regression, area under the receiver operating characteristic curve, validation, bootstrap
Popis: When the same data are used to fit a model and estimate its predictive performance, this estimate may be optimistic, and its correction is required. The aim of this work is to compare the behaviour of different methods proposed in the literature when correcting for the optimism of the estimated area under the receiver operating characteristic curve in logistic regression models. A simulation study (where the theoretical model is known) is conducted considering different number of covariates, sample size, prevalence and correlation among covariates. The results suggest the use of k-fold cross-validation with replication and bootstrap.
Druh dokumentu: Article
Other literature type
Popis súboru: application/pdf
DOI: 10.2436/20.8080.02.82
Prístupová URL adresa: http://hdl.handle.net/20.500.11797/RP3412
https://hdl.handle.net/20.500.11797/RP3412
https://ddd.uab.cat/record/205824
https://hdl.handle.net/2117/178517
http://hdl.handle.net/2117/178517
https://upcommons.upc.edu/handle/2117/178517
https://dialnet.unirioja.es/servlet/articulo?codigo=7013164
https://ddd.uab.cat/pub/sort/sort_a2019m1-6v43n1/sort_a2019m1-6v43n1p145.pdf
https://ddd.uab.cat/record/205824?ln=ca
https://www.raco.cat/index.php/SORT/article/view/356185
Rights: CC BY NC ND
Prístupové číslo: edsair.dedup.wf.002..db8b32af8d507cbfc40077de79bff92c
Databáza: OpenAIRE
Popis
Abstrakt:When the same data are used to fit a model and estimate its predictive performance, this estimate may be optimistic, and its correction is required. The aim of this work is to compare the behaviour of different methods proposed in the literature when correcting for the optimism of the estimated area under the receiver operating characteristic curve in logistic regression models. A simulation study (where the theoretical model is known) is conducted considering different number of covariates, sample size, prevalence and correlation among covariates. The results suggest the use of k-fold cross-validation with replication and bootstrap.
DOI:10.2436/20.8080.02.82