Tilings and the aztec diamond theorem
Uloženo v:
| Název: | Tilings and the aztec diamond theorem |
|---|---|
| Autoři: | Pardo Simón, David Alberto |
| Přispěvatelé: | Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II, Mier Vinué, Anna de |
| Zdroj: | Recercat. Dipósit de la Recerca de Catalunya instname UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
| Informace o vydavateli: | Universitat Politècnica de Catalunya, 2016. |
| Rok vydání: | 2016 |
| Témata: | Combinatorial analysis, Tilings, Classificació AMS::05 Combinatorics::05A Enumerative combinatorics, Combinacions (Matemàtica), Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria, Aztec Diamond, 05 Combinatorics::05A Enumerative combinatorics [Classificació AMS], Matemàtiques i estadística::Matemàtica discreta::Combinatòria [Àrees temàtiques de la UPC], Tessellations |
| Popis: | Tilings over the plane are analysed in this work, making a special focus on the Aztec Diamond Theorem. A review of the most relevant results about monohedral tilings is made to continue later by introducing domino tilings over subsets of R2. Based on previous work made by other mathematicians, a proof of the Aztec Diamond Theorem is presented in full detail by completing the description of a bijection that was not made explicit in the original work. |
| Druh dokumentu: | Bachelor thesis |
| Popis souboru: | application/pdf |
| Přístupová URL adresa: | http://hdl.handle.net/2117/89739 https://hdl.handle.net/2117/89739 |
| Rights: | CC BY NC ND |
| Přístupové číslo: | edsair.dedup.wf.002..be4adfbaf563d9e3ee68d8d66f91ac71 |
| Databáze: | OpenAIRE |
| Abstrakt: | Tilings over the plane are analysed in this work, making a special focus on the Aztec Diamond Theorem. A review of the most relevant results about monohedral tilings is made to continue later by introducing domino tilings over subsets of R2. Based on previous work made by other mathematicians, a proof of the Aztec Diamond Theorem is presented in full detail by completing the description of a bijection that was not made explicit in the original work. |
|---|
Nájsť tento článok vo Web of Science