Tilings and the aztec diamond theorem

Uloženo v:
Podrobná bibliografie
Název: Tilings and the aztec diamond theorem
Autoři: Pardo Simón, David Alberto
Přispěvatelé: Universitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II, Mier Vinué, Anna de
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
instname
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Informace o vydavateli: Universitat Politècnica de Catalunya, 2016.
Rok vydání: 2016
Témata: Combinatorial analysis, Tilings, Classificació AMS::05 Combinatorics::05A Enumerative combinatorics, Combinacions (Matemàtica), Àrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Combinatòria, Aztec Diamond, 05 Combinatorics::05A Enumerative combinatorics [Classificació AMS], Matemàtiques i estadística::Matemàtica discreta::Combinatòria [Àrees temàtiques de la UPC], Tessellations
Popis: Tilings over the plane are analysed in this work, making a special focus on the Aztec Diamond Theorem. A review of the most relevant results about monohedral tilings is made to continue later by introducing domino tilings over subsets of R2. Based on previous work made by other mathematicians, a proof of the Aztec Diamond Theorem is presented in full detail by completing the description of a bijection that was not made explicit in the original work.
Druh dokumentu: Bachelor thesis
Popis souboru: application/pdf
Přístupová URL adresa: http://hdl.handle.net/2117/89739
https://hdl.handle.net/2117/89739
Rights: CC BY NC ND
Přístupové číslo: edsair.dedup.wf.002..be4adfbaf563d9e3ee68d8d66f91ac71
Databáze: OpenAIRE
Popis
Abstrakt:Tilings over the plane are analysed in this work, making a special focus on the Aztec Diamond Theorem. A review of the most relevant results about monohedral tilings is made to continue later by introducing domino tilings over subsets of R2. Based on previous work made by other mathematicians, a proof of the Aztec Diamond Theorem is presented in full detail by completing the description of a bijection that was not made explicit in the original work.