Weak convergence of fixed point iterations in $S$-metric spaces: Weak convergence of fixed point iterations in \(S\)-metric spaces

Uloženo v:
Podrobná bibliografie
Název: Weak convergence of fixed point iterations in $S$-metric spaces: Weak convergence of fixed point iterations in \(S\)-metric spaces
Autoři: Siva G, Loganathan S
Zdroj: Journal of Mahani Mathematical Research, Vol 13, Iss 1, Pp 563-574 (2023)
Informace o vydavateli: Mahani Mathematical Research Center c/o Shahid Bahonar University of Kerman, Faculty of Mathematics \& Computer, Kerman, 2023.
Rok vydání: 2023
Témata: Abstract approximation theory (approximation in normed linear spaces and other abstract spaces), semi s-metric space, Fixed-point and coincidence theorems (topological aspects), semi \(S\)-metric space, QA1-939, weak convergence, directed set, Special maps on metric spaces, Mathematics
Popis: Summary: This paper extends the notion of weak convergence in metric spaces to the case of \(S\)-metric spaces. Moreover, some results on the weak convergence of fixed point iterations of Banach's, Kannan's, Chatterjee's, Reich's, Hardy and Roger's types of contractions on \(S\)-metric spaces are obtained. In addition, an example is presented to demonstrate our primary result.
Druh dokumentu: Article
Popis souboru: application/xml
ISSN: 2251-7952
DOI: 10.22103/jmmr.2023.21119.1407
Přístupová URL adresa: https://doaj.org/article/44140fd193c0426390bb99bc489e3346
Přístupové číslo: edsair.dedup.wf.002..a4d5d19ed153d5512a57c91db20459a0
Databáze: OpenAIRE
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.