optimal error of analytic continuation from a finite set with inaccurate data in hilbert spaces of holomorphic functions: Optimal error of analytic continuation from a finite set with inaccurate data in Hilbert spaces of holomorphic functions
Uložené v:
| Názov: | optimal error of analytic continuation from a finite set with inaccurate data in hilbert spaces of holomorphic functions: Optimal error of analytic continuation from a finite set with inaccurate data in Hilbert spaces of holomorphic functions |
|---|---|
| Autori: | L. S. Maergoiz, A. M. Fedotov |
| Zdroj: | Siberian Mathematical Journal. 42(5):926-935 |
| Informácie o vydavateľovi: | Russian Academy of Sciences - RAS (Rossiĭskaya Akademiya Nauk - RAN), Siberian Branch (Sibirskoe Otdelenie), Sobolev Insitute of Mathematics (Institut Matematiki Im. S. L. Soboleva), Novosibirsk, 2001. |
| Rok vydania: | 2001 |
| Predmety: | analytic continuation, Entire functions of several complex variables, Removable singularities in several complex variables, Continuation of analytic objects in several complex variables, extrapolation with inaccurate data, optimal error, optimal linear algorithm |
| Popis: | The article under review refers to the papers [\textit{L.~S.~Maergojz}, Sib. Math. J. 41, No. 6, 1126-1136 (2000; Zbl 0970.32011) and Dokl. Math. 56, No. 2, 674-678 (1997; Zbl 0973.32002)] wherein the problem of optimal extrapolation from a finite set is studied in the class of entire functions with finite spectrum. The aim of the present article is to study this problem in the case of analytic continuation from a finite set with inaccurate data. To estimate the error of a linear functional, an approach is employed suggested by \textit{K.~Miller} in [SIAM J. Math. Anal. 1, 52-74 (1970; Zbl 0214.14804)] based on using the least squares method for ill-posed problems with a prescribed bound. As a result, the authors obtain constructive formulas for calculating the optimal error of the optimal linear algorithm for extrapolation from a set \(U\) to a point \(z_0\) in the class of functions \[ V = \{f\in H(D): \|f\|\leq r\}, \quad r > 0, \] where \(H\) is a Hilbert space with reproducing kernel. Moreover, the asymptotic behavior of the optimal error is investigated in the case when the errors of estimating the initial data tend to zero. |
| Druh dokumentu: | Article |
| Popis súboru: | application/xml |
| ISSN: | 0037-4466 |
| DOI: | 10.1023/a:1011967711386 |
| Prístupová URL adresa: | https://zbmath.org/1746519 https://link.springer.com/article/10.1023%2FA%3A1011967711386 |
| Prístupové číslo: | edsair.dedup.wf.002..a40bceb4194ec2e42a7c72c4b51f7966 |
| Databáza: | OpenAIRE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://explore.openaire.eu/search/publication?articleId=dedup_wf_002%3A%3Aa40bceb4194ec2e42a7c72c4b51f7966 Name: EDS - OpenAIRE (s4221598) Category: fullText Text: View record at OpenAIRE – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edsair&genre=article&issn=00374466&ISBN=&volume=42&issue=5&date=20010901&spage=926&pages=926-935&title=Siberian Mathematical Journal&atitle=optimal%20error%20of%20analytic%20continuation%20from%20a%20finite%20set%20with%20inaccurate%20data%20in%20hilbert%20spaces%20of%20holomorphic%20functions%3A%20Optimal%20error%20of%20analytic%20continuation%20from%20a%20finite%20set%20with%20inaccurate%20data%20in%20Hilbert%20spaces%20of%20holomorphic%20functions&aulast=L.%20S.%20Maergoiz&id=DOI:10.1023/a:1011967711386 Name: Full Text Finder Category: fullText Text: Full Text Finder Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif MouseOverText: Full Text Finder – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Maergoiz%20LS Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsair DbLabel: OpenAIRE An: edsair.dedup.wf.002..a40bceb4194ec2e42a7c72c4b51f7966 RelevancyScore: 803 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 803.185791015625 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: optimal error of analytic continuation from a finite set with inaccurate data in hilbert spaces of holomorphic functions: Optimal error of analytic continuation from a finite set with inaccurate data in Hilbert spaces of holomorphic functions – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22L%2E+S%2E+Maergoiz%22">L. S. Maergoiz</searchLink><br /><searchLink fieldCode="AR" term="%22A%2E+M%2E+Fedotov%22">A. M. Fedotov</searchLink> – Name: TitleSource Label: Source Group: Src Data: <i>Siberian Mathematical Journal</i>. 42(5):926-935 – Name: Publisher Label: Publisher Information Group: PubInfo Data: Russian Academy of Sciences - RAS (Rossiĭskaya Akademiya Nauk - RAN), Siberian Branch (Sibirskoe Otdelenie), Sobolev Insitute of Mathematics (Institut Matematiki Im. S. L. Soboleva), Novosibirsk, 2001. – Name: DatePubCY Label: Publication Year Group: Date Data: 2001 – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22analytic+continuation%22">analytic continuation</searchLink><br /><searchLink fieldCode="DE" term="%22Entire+functions+of+several+complex+variables%22">Entire functions of several complex variables</searchLink><br /><searchLink fieldCode="DE" term="%22Removable+singularities+in+several+complex+variables%22">Removable singularities in several complex variables</searchLink><br /><searchLink fieldCode="DE" term="%22Continuation+of+analytic+objects+in+several+complex+variables%22">Continuation of analytic objects in several complex variables</searchLink><br /><searchLink fieldCode="DE" term="%22extrapolation+with+inaccurate+data%22">extrapolation with inaccurate data</searchLink><br /><searchLink fieldCode="DE" term="%22optimal+error%22">optimal error</searchLink><br /><searchLink fieldCode="DE" term="%22optimal+linear+algorithm%22">optimal linear algorithm</searchLink> – Name: Abstract Label: Description Group: Ab Data: The article under review refers to the papers [\textit{L.~S.~Maergojz}, Sib. Math. J. 41, No. 6, 1126-1136 (2000; Zbl 0970.32011) and Dokl. Math. 56, No. 2, 674-678 (1997; Zbl 0973.32002)] wherein the problem of optimal extrapolation from a finite set is studied in the class of entire functions with finite spectrum. The aim of the present article is to study this problem in the case of analytic continuation from a finite set with inaccurate data. To estimate the error of a linear functional, an approach is employed suggested by \textit{K.~Miller} in [SIAM J. Math. Anal. 1, 52-74 (1970; Zbl 0214.14804)] based on using the least squares method for ill-posed problems with a prescribed bound. As a result, the authors obtain constructive formulas for calculating the optimal error of the optimal linear algorithm for extrapolation from a set \(U\) to a point \(z_0\) in the class of functions \[ V = \{f\in H(D): \|f\|\leq r\}, \quad r > 0, \] where \(H\) is a Hilbert space with reproducing kernel. Moreover, the asymptotic behavior of the optimal error is investigated in the case when the errors of estimating the initial data tend to zero. – Name: TypeDocument Label: Document Type Group: TypDoc Data: Article – Name: Format Label: File Description Group: SrcInfo Data: application/xml – Name: ISSN Label: ISSN Group: ISSN Data: 0037-4466 – Name: DOI Label: DOI Group: ID Data: 10.1023/a:1011967711386 – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://zbmath.org/1746519" linkWindow="_blank">https://zbmath.org/1746519</link><br /><link linkTarget="URL" linkTerm="https://link.springer.com/article/10.1023%2FA%3A1011967711386" linkWindow="_blank">https://link.springer.com/article/10.1023%2FA%3A1011967711386</link> – Name: AN Label: Accession Number Group: ID Data: edsair.dedup.wf.002..a40bceb4194ec2e42a7c72c4b51f7966 |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.dedup.wf.002..a40bceb4194ec2e42a7c72c4b51f7966 |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1023/a:1011967711386 Languages: – Text: Undetermined PhysicalDescription: Pagination: PageCount: 10 StartPage: 926 Subjects: – SubjectFull: analytic continuation Type: general – SubjectFull: Entire functions of several complex variables Type: general – SubjectFull: Removable singularities in several complex variables Type: general – SubjectFull: Continuation of analytic objects in several complex variables Type: general – SubjectFull: extrapolation with inaccurate data Type: general – SubjectFull: optimal error Type: general – SubjectFull: optimal linear algorithm Type: general Titles: – TitleFull: optimal error of analytic continuation from a finite set with inaccurate data in hilbert spaces of holomorphic functions: Optimal error of analytic continuation from a finite set with inaccurate data in Hilbert spaces of holomorphic functions Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: L. S. Maergoiz – PersonEntity: Name: NameFull: A. M. Fedotov IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 09 Type: published Y: 2001 Identifiers: – Type: issn-print Value: 00374466 – Type: issn-locals Value: edsair Numbering: – Type: volume Value: 42 – Type: issue Value: 5 Titles: – TitleFull: Siberian Mathematical Journal Type: main |
| ResultId | 1 |
Full Text Finder
Nájsť tento článok vo Web of Science