COMPUTING MULTIPLE QUADRATIC FORMS FOR A MINIMUM VARIANCE DISTORTIONLESS RESPONSE ADAPTIVE BEAMFORMER USING PARALLELISM: ANALYSES AND EXPERIMENTS

Saved in:
Bibliographic Details
Title: COMPUTING MULTIPLE QUADRATIC FORMS FOR A MINIMUM VARIANCE DISTORTIONLESS RESPONSE ADAPTIVE BEAMFORMER USING PARALLELISM: ANALYSES AND EXPERIMENTS
Authors: Wang, Mu-Cheng, Nation, Wayne G., Armstrong, James B., Siegel, Howard Jay, Kim, Shin-Dug, Nichols, Mark A., Gherrity, Michael
Source: Department of Electrical and Computer Engineering Technical Reports
Publisher Information: Purdue University, 1993.
Publication Year: 1993
Subject Terms: PASM, MasPar MP-1, scalable algorithms, multiple quadratic forms, data-parallel algorithms, nCUBE 2
Description: Data-parallel implementations of the computationally intensive task of solving multiple quadratic forms (MQFs) have been examined. Coupled and uncoupled parallel methods are investigated, where coupling relates to the degree of interaction among the processors. Also, the impact of partitioning a large MQF problem into smaller non-interacting subtasks is studied. Trade-offs among the implementations for various data-size/machine-size ratios are categorized in terms of complex arithmetic operation counts, communication overhead, and memory storage requirements. Furthermore, the impact on performance of the mode of parallelism used is considered, specifically, SIMD versus MIMD versus SIMD/MIMD mixed-mode. From the complexity analyses, it is shown that none of the algorithms presented in this paper is best for all datasize/ machine-size ratios. Thus, to achieve scalability (i.e., good performance as the number of processors available in a machine increases), instead of using a single algorithm, the approach proposed is to have a set of algorithms from which the most appropriate algorithm or combination of algorithms is selected based on the ratio calculated from the scaled machine size. The analytical results have been verified from experiments on the MasPar MP-1 (SIMD), nCUBE 2 (MIMD), and PASM (mixed-mode) prototype.
Document Type: Other literature type
Article
File Description: application/pdf
Access URL: http://docs.lib.purdue.edu/ecetr/230
http://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1233&context=ecetr
Accession Number: edsair.dedup.wf.002..6d4655467ec7e34b05da99f91ffed67a
Database: OpenAIRE
Description
Abstract:Data-parallel implementations of the computationally intensive task of solving multiple quadratic forms (MQFs) have been examined. Coupled and uncoupled parallel methods are investigated, where coupling relates to the degree of interaction among the processors. Also, the impact of partitioning a large MQF problem into smaller non-interacting subtasks is studied. Trade-offs among the implementations for various data-size/machine-size ratios are categorized in terms of complex arithmetic operation counts, communication overhead, and memory storage requirements. Furthermore, the impact on performance of the mode of parallelism used is considered, specifically, SIMD versus MIMD versus SIMD/MIMD mixed-mode. From the complexity analyses, it is shown that none of the algorithms presented in this paper is best for all datasize/ machine-size ratios. Thus, to achieve scalability (i.e., good performance as the number of processors available in a machine increases), instead of using a single algorithm, the approach proposed is to have a set of algorithms from which the most appropriate algorithm or combination of algorithms is selected based on the ratio calculated from the scaled machine size. The analytical results have been verified from experiments on the MasPar MP-1 (SIMD), nCUBE 2 (MIMD), and PASM (mixed-mode) prototype.