symmetry classification for jackson integrals associated with the root system bc n: Symmetry classification for Jackson integrals associated with the root system \(BC_n\)

Uloženo v:
Podrobná bibliografie
Název: symmetry classification for jackson integrals associated with the root system bc n: Symmetry classification for Jackson integrals associated with the root system \(BC_n\)
Autoři: Masahiko Ito
Zdroj: Compositio Mathematica. 136(2):209-216
Informace o vydavateli: Cambridge University Press, Cambridge; London Mathematical Society, London, 2003.
Rok vydání: 2003
Témata: Jackson integrals, non-reduced root system, Bailey's very-well-poised \(_6\psi _6\) sum, van Diejen's \(BC_n\)-type sum, Gustafson's \(C_n\)-type sum, Basic hypergeometric functions associated with root systems
Popis: Summary: The Jackson integrals associated with the non-reduced root system are defined as multiple sums which are generalization of the Bailey's very-well-poised \({}_6\psi_6\) sum. They are classified by the number of their parameters when they can be expressed as a product of the Jacobi elliptic theta functions. The sums which appear in the classification list coincide with those investigated individually by \textit{R. A. Gustafson} [Ramanujan International Symposium on Analysis (Pune, 1987), Macmillan of India, New Delhi, 185--224 (1989)] and \textit{J. F. van Diejen} [Publ. Res. Inst. Math. Sci. 33, No. 3, 483--508 (1997; Zbl 0894.33007)].
Druh dokumentu: Article
Popis souboru: application/xml
ISSN: 0010-437X
DOI: 10.1023/a:1022892011301
Přístupová URL adresa: https://zbmath.org/1908550
https://doi.org/10.1023/a:1022892011301
https://link.springer.com/article/10.1023/A:1022892011301
Přístupové číslo: edsair.dedup.wf.002..4c6a768a5bd6a1c1e7e06e6856254e2c
Databáze: OpenAIRE
Popis
Abstrakt:Summary: The Jackson integrals associated with the non-reduced root system are defined as multiple sums which are generalization of the Bailey's very-well-poised \({}_6\psi_6\) sum. They are classified by the number of their parameters when they can be expressed as a product of the Jacobi elliptic theta functions. The sums which appear in the classification list coincide with those investigated individually by \textit{R. A. Gustafson} [Ramanujan International Symposium on Analysis (Pune, 1987), Macmillan of India, New Delhi, 185--224 (1989)] and \textit{J. F. van Diejen} [Publ. Res. Inst. Math. Sci. 33, No. 3, 483--508 (1997; Zbl 0894.33007)].
ISSN:0010437X
DOI:10.1023/a:1022892011301