symmetry classification for jackson integrals associated with the root system bc n: Symmetry classification for Jackson integrals associated with the root system \(BC_n\)
Uloženo v:
| Název: | symmetry classification for jackson integrals associated with the root system bc n: Symmetry classification for Jackson integrals associated with the root system \(BC_n\) |
|---|---|
| Autoři: | Masahiko Ito |
| Zdroj: | Compositio Mathematica. 136(2):209-216 |
| Informace o vydavateli: | Cambridge University Press, Cambridge; London Mathematical Society, London, 2003. |
| Rok vydání: | 2003 |
| Témata: | Jackson integrals, non-reduced root system, Bailey's very-well-poised \(_6\psi _6\) sum, van Diejen's \(BC_n\)-type sum, Gustafson's \(C_n\)-type sum, Basic hypergeometric functions associated with root systems |
| Popis: | Summary: The Jackson integrals associated with the non-reduced root system are defined as multiple sums which are generalization of the Bailey's very-well-poised \({}_6\psi_6\) sum. They are classified by the number of their parameters when they can be expressed as a product of the Jacobi elliptic theta functions. The sums which appear in the classification list coincide with those investigated individually by \textit{R. A. Gustafson} [Ramanujan International Symposium on Analysis (Pune, 1987), Macmillan of India, New Delhi, 185--224 (1989)] and \textit{J. F. van Diejen} [Publ. Res. Inst. Math. Sci. 33, No. 3, 483--508 (1997; Zbl 0894.33007)]. |
| Druh dokumentu: | Article |
| Popis souboru: | application/xml |
| ISSN: | 0010-437X |
| DOI: | 10.1023/a:1022892011301 |
| Přístupová URL adresa: | https://zbmath.org/1908550 https://doi.org/10.1023/a:1022892011301 https://link.springer.com/article/10.1023/A:1022892011301 |
| Přístupové číslo: | edsair.dedup.wf.002..4c6a768a5bd6a1c1e7e06e6856254e2c |
| Databáze: | OpenAIRE |
| Abstrakt: | Summary: The Jackson integrals associated with the non-reduced root system are defined as multiple sums which are generalization of the Bailey's very-well-poised \({}_6\psi_6\) sum. They are classified by the number of their parameters when they can be expressed as a product of the Jacobi elliptic theta functions. The sums which appear in the classification list coincide with those investigated individually by \textit{R. A. Gustafson} [Ramanujan International Symposium on Analysis (Pune, 1987), Macmillan of India, New Delhi, 185--224 (1989)] and \textit{J. F. van Diejen} [Publ. Res. Inst. Math. Sci. 33, No. 3, 483--508 (1997; Zbl 0894.33007)]. |
|---|---|
| ISSN: | 0010437X |
| DOI: | 10.1023/a:1022892011301 |
Full Text Finder
Nájsť tento článok vo Web of Science