Complexity of realization of symmetric Boolean functions by switching circuits
Gespeichert in:
| Titel: | Complexity of realization of symmetric Boolean functions by switching circuits |
|---|---|
| Autoren: | Grinchuk, M. I. |
| Verlagsinformationen: | Nauka, Moscow |
| Schlagwörter: | Analysis of algorithms and problem complexity, Switching theory, application of Boolean algebra, Boolean functions, contact schemes, symmetric Boolean functions, complexity, switching circuits |
| Beschreibung: | This paper is a valuable contribution to Boolean function complexity theory, especially for the development of lower bound proof techniques. The author investigates the 25-year-old open problem of whether any symmetric Boolean function can be realized with linear complexity by contact schemes (switching circuits). Due to the almost linear \((O(n (\log n)^ 2/ \log\log n)\), \(O(n(\log n)^ 4/ (\log\log n)^ 2))\) upper bounds on the complexity of some subclasses of symmetric Boolean functions established in earlier papers by \textit{O. B. Lupanov} [Probl. Kibern. 15, 85-99 (1965)] and \textit{E. G. Krasulina} [Mat. Vopr. Kobern. 1, 140-167 (1988; Zbl 0668.94021)], the hypothesis that any symmetric function has linear complexity has been formulated. Here, it is shown that there exist symmetric Boolean functions which have nonlinear complexity (by contact schemes realization). The method of proof is interesting and is based on nontrivial combinatorial considerations. The paper should be of great interest to anyone dealing with lower bound proofs in complexity theory. |
| Publikationsart: | Article |
| Dateibeschreibung: | application/xml |
| Zugangs-URL: | https://zbmath.org/23013 |
| Dokumentencode: | edsair.c2b0b933574d..e721b3b4efd3af1f7e9923e78540830d |
| Datenbank: | OpenAIRE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://explore.openaire.eu/search/publication?articleId=c2b0b933574d%3A%3Ae721b3b4efd3af1f7e9923e78540830d Name: EDS - OpenAIRE (s4221598) Category: fullText Text: View record at OpenAIRE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Grinchuk%20MI Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsair DbLabel: OpenAIRE An: edsair.c2b0b933574d..e721b3b4efd3af1f7e9923e78540830d RelevancyScore: 685 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 685 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: Complexity of realization of symmetric Boolean functions by switching circuits – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Grinchuk%2C+M%2E+I%2E%22">Grinchuk, M. I.</searchLink> – Name: Publisher Label: Publisher Information Group: PubInfo Data: Nauka, Moscow – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Analysis+of+algorithms+and+problem+complexity%22">Analysis of algorithms and problem complexity</searchLink><br /><searchLink fieldCode="DE" term="%22Switching+theory%2C+application+of+Boolean+algebra%22">Switching theory, application of Boolean algebra</searchLink><br /><searchLink fieldCode="DE" term="%22Boolean+functions%22">Boolean functions</searchLink><br /><searchLink fieldCode="DE" term="%22contact+schemes%22">contact schemes</searchLink><br /><searchLink fieldCode="DE" term="%22symmetric+Boolean+functions%22">symmetric Boolean functions</searchLink><br /><searchLink fieldCode="DE" term="%22complexity%22">complexity</searchLink><br /><searchLink fieldCode="DE" term="%22switching+circuits%22">switching circuits</searchLink> – Name: Abstract Label: Description Group: Ab Data: This paper is a valuable contribution to Boolean function complexity theory, especially for the development of lower bound proof techniques. The author investigates the 25-year-old open problem of whether any symmetric Boolean function can be realized with linear complexity by contact schemes (switching circuits). Due to the almost linear \((O(n (\log n)^ 2/ \log\log n)\), \(O(n(\log n)^ 4/ (\log\log n)^ 2))\) upper bounds on the complexity of some subclasses of symmetric Boolean functions established in earlier papers by \textit{O. B. Lupanov} [Probl. Kibern. 15, 85-99 (1965)] and \textit{E. G. Krasulina} [Mat. Vopr. Kobern. 1, 140-167 (1988; Zbl 0668.94021)], the hypothesis that any symmetric function has linear complexity has been formulated. Here, it is shown that there exist symmetric Boolean functions which have nonlinear complexity (by contact schemes realization). The method of proof is interesting and is based on nontrivial combinatorial considerations. The paper should be of great interest to anyone dealing with lower bound proofs in complexity theory. – Name: TypeDocument Label: Document Type Group: TypDoc Data: Article – Name: Format Label: File Description Group: SrcInfo Data: application/xml – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://zbmath.org/23013" linkWindow="_blank">https://zbmath.org/23013</link> – Name: AN Label: Accession Number Group: ID Data: edsair.c2b0b933574d..e721b3b4efd3af1f7e9923e78540830d |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.c2b0b933574d..e721b3b4efd3af1f7e9923e78540830d |
| RecordInfo | BibRecord: BibEntity: Languages: – Text: Undetermined Subjects: – SubjectFull: Analysis of algorithms and problem complexity Type: general – SubjectFull: Switching theory, application of Boolean algebra Type: general – SubjectFull: Boolean functions Type: general – SubjectFull: contact schemes Type: general – SubjectFull: symmetric Boolean functions Type: general – SubjectFull: complexity Type: general – SubjectFull: switching circuits Type: general Titles: – TitleFull: Complexity of realization of symmetric Boolean functions by switching circuits Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Grinchuk, M. I. IsPartOfRelationships: – BibEntity: Identifiers: – Type: issn-locals Value: edsair |
| ResultId | 1 |
Nájsť tento článok vo Web of Science