\(\mathbb Z_p\)-equivariant Spin\(^c\)-structures

Gespeichert in:
Bibliographische Detailangaben
Titel: \(\mathbb Z_p\)-equivariant Spin\(^c\)-structures
Autoren: Cho, Yong Seung, Hong, Yoon Hi
Verlagsinformationen: Korean Mathematical Society, Seoul
Schlagwörter: General low-dimensional topology, Applications of global analysis to structures on manifolds, Equivariant algebraic topology of manifolds, involutions, 4-manifold with a \(\mathbb{Z}_p\)-action, equivariant, Finite transformation groups, moduli space, \(\text{Spin}^c\)-structure, Seiberg-Witten equations, Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)
Beschreibung: Let \(X\) be a closed, oriented, Riemannian \(4\)-manifold with a \(\mathbb Z_p\)-action \(\sigma\) and a \(\text{Spin}^c\)-structure \(\tilde P\) equivariant with respect to some lift of \(\sigma\). The authors consider Seiberg-Witten equations, define an invariant moduli space and calculate its virtual dimension. As an application to orientation preserving involutions, the authors show that if, in addition to above assumptions, the manifold \(X\) is of simple type, \(b_2^+(X)>1\), the set of fixed points \(\Sigma\) is an oriented, connected, compact \(2\)-dimensional submanifold, \(\Sigma\cdot\Sigma\geq 0\), \([\Sigma]\neq 0\in H_2(X,\mathbb Z)\), \(SW(\tilde P)\neq 0\), and \(c_1(L)[\Sigma]=0\), where \(L\) is the determinant line bundle associated with \(\tilde P\), then \(\chi(\Sigma)+\Sigma\cdot\Sigma=0\).
Publikationsart: Article
Dateibeschreibung: application/xml
DOI: 10.4134/bkms.2003.40.1.017
Zugangs-URL: https://zbmath.org/1990038
Dokumentencode: edsair.c2b0b933574d..88b26d4c3e0daf4e180cd94e4ce9b15e
Datenbank: OpenAIRE