\(\mathbb Z_p\)-equivariant Spin\(^c\)-structures

Uloženo v:
Podrobná bibliografie
Název: \(\mathbb Z_p\)-equivariant Spin\(^c\)-structures
Autoři: Cho, Yong Seung, Hong, Yoon Hi
Informace o vydavateli: Korean Mathematical Society, Seoul
Témata: General low-dimensional topology, Applications of global analysis to structures on manifolds, Equivariant algebraic topology of manifolds, involutions, 4-manifold with a \(\mathbb{Z}_p\)-action, equivariant, Finite transformation groups, moduli space, \(\text{Spin}^c\)-structure, Seiberg-Witten equations, Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)
Popis: Let \(X\) be a closed, oriented, Riemannian \(4\)-manifold with a \(\mathbb Z_p\)-action \(\sigma\) and a \(\text{Spin}^c\)-structure \(\tilde P\) equivariant with respect to some lift of \(\sigma\). The authors consider Seiberg-Witten equations, define an invariant moduli space and calculate its virtual dimension. As an application to orientation preserving involutions, the authors show that if, in addition to above assumptions, the manifold \(X\) is of simple type, \(b_2^+(X)>1\), the set of fixed points \(\Sigma\) is an oriented, connected, compact \(2\)-dimensional submanifold, \(\Sigma\cdot\Sigma\geq 0\), \([\Sigma]\neq 0\in H_2(X,\mathbb Z)\), \(SW(\tilde P)\neq 0\), and \(c_1(L)[\Sigma]=0\), where \(L\) is the determinant line bundle associated with \(\tilde P\), then \(\chi(\Sigma)+\Sigma\cdot\Sigma=0\).
Druh dokumentu: Article
Popis souboru: application/xml
DOI: 10.4134/bkms.2003.40.1.017
Přístupová URL adresa: https://zbmath.org/1990038
Přístupové číslo: edsair.c2b0b933574d..88b26d4c3e0daf4e180cd94e4ce9b15e
Databáze: OpenAIRE
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.