\(\mathbb Z_p\)-equivariant Spin\(^c\)-structures
Uložené v:
| Názov: | \(\mathbb Z_p\)-equivariant Spin\(^c\)-structures |
|---|---|
| Autori: | Cho, Yong Seung, Hong, Yoon Hi |
| Informácie o vydavateľovi: | Korean Mathematical Society, Seoul |
| Predmety: | General low-dimensional topology, Applications of global analysis to structures on manifolds, Equivariant algebraic topology of manifolds, involutions, 4-manifold with a \(\mathbb{Z}_p\)-action, equivariant, Finite transformation groups, moduli space, \(\text{Spin}^c\)-structure, Seiberg-Witten equations, Specialized structures on manifolds (spin manifolds, framed manifolds, etc.) |
| Popis: | Let \(X\) be a closed, oriented, Riemannian \(4\)-manifold with a \(\mathbb Z_p\)-action \(\sigma\) and a \(\text{Spin}^c\)-structure \(\tilde P\) equivariant with respect to some lift of \(\sigma\). The authors consider Seiberg-Witten equations, define an invariant moduli space and calculate its virtual dimension. As an application to orientation preserving involutions, the authors show that if, in addition to above assumptions, the manifold \(X\) is of simple type, \(b_2^+(X)>1\), the set of fixed points \(\Sigma\) is an oriented, connected, compact \(2\)-dimensional submanifold, \(\Sigma\cdot\Sigma\geq 0\), \([\Sigma]\neq 0\in H_2(X,\mathbb Z)\), \(SW(\tilde P)\neq 0\), and \(c_1(L)[\Sigma]=0\), where \(L\) is the determinant line bundle associated with \(\tilde P\), then \(\chi(\Sigma)+\Sigma\cdot\Sigma=0\). |
| Druh dokumentu: | Article |
| Popis súboru: | application/xml |
| DOI: | 10.4134/bkms.2003.40.1.017 |
| Prístupová URL adresa: | https://zbmath.org/1990038 |
| Prístupové číslo: | edsair.c2b0b933574d..88b26d4c3e0daf4e180cd94e4ce9b15e |
| Databáza: | OpenAIRE |
| FullText | Text: Availability: 0 CustomLinks: – Url: https://explore.openaire.eu/search/publication?articleId=c2b0b933574d%3A%3A88b26d4c3e0daf4e180cd94e4ce9b15e Name: EDS - OpenAIRE (s4221598) Category: fullText Text: View record at OpenAIRE – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Cho%20YS Name: ISI Category: fullText Text: Nájsť tento článok vo Web of Science Icon: https://imagesrvr.epnet.com/ls/20docs.gif MouseOverText: Nájsť tento článok vo Web of Science |
|---|---|
| Header | DbId: edsair DbLabel: OpenAIRE An: edsair.c2b0b933574d..88b26d4c3e0daf4e180cd94e4ce9b15e RelevancyScore: 685 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 685 |
| IllustrationInfo | |
| Items | – Name: Title Label: Title Group: Ti Data: \(\mathbb Z_p\)-equivariant Spin\(^c\)-structures – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Cho%2C+Yong+Seung%22">Cho, Yong Seung</searchLink><br /><searchLink fieldCode="AR" term="%22Hong%2C+Yoon+Hi%22">Hong, Yoon Hi</searchLink> – Name: Publisher Label: Publisher Information Group: PubInfo Data: Korean Mathematical Society, Seoul – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22General+low-dimensional+topology%22">General low-dimensional topology</searchLink><br /><searchLink fieldCode="DE" term="%22Applications+of+global+analysis+to+structures+on+manifolds%22">Applications of global analysis to structures on manifolds</searchLink><br /><searchLink fieldCode="DE" term="%22Equivariant+algebraic+topology+of+manifolds%22">Equivariant algebraic topology of manifolds</searchLink><br /><searchLink fieldCode="DE" term="%22involutions%22">involutions</searchLink><br /><searchLink fieldCode="DE" term="%224-manifold+with+a+%5C%28%5Cmathbb{Z}%5Fp%5C%29-action%22">4-manifold with a \(\mathbb{Z}_p\)-action</searchLink><br /><searchLink fieldCode="DE" term="%22equivariant%22">equivariant</searchLink><br /><searchLink fieldCode="DE" term="%22Finite+transformation+groups%22">Finite transformation groups</searchLink><br /><searchLink fieldCode="DE" term="%22moduli+space%22">moduli space</searchLink><br /><searchLink fieldCode="DE" term="%22%5C%28%5Ctext{Spin}^c%5C%29-structure%22">\(\text{Spin}^c\)-structure</searchLink><br /><searchLink fieldCode="DE" term="%22Seiberg-Witten+equations%22">Seiberg-Witten equations</searchLink><br /><searchLink fieldCode="DE" term="%22Specialized+structures+on+manifolds+%28spin+manifolds%2C+framed+manifolds%2C+etc%2E%29%22">Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)</searchLink> – Name: Abstract Label: Description Group: Ab Data: Let \(X\) be a closed, oriented, Riemannian \(4\)-manifold with a \(\mathbb Z_p\)-action \(\sigma\) and a \(\text{Spin}^c\)-structure \(\tilde P\) equivariant with respect to some lift of \(\sigma\). The authors consider Seiberg-Witten equations, define an invariant moduli space and calculate its virtual dimension. As an application to orientation preserving involutions, the authors show that if, in addition to above assumptions, the manifold \(X\) is of simple type, \(b_2^+(X)>1\), the set of fixed points \(\Sigma\) is an oriented, connected, compact \(2\)-dimensional submanifold, \(\Sigma\cdot\Sigma\geq 0\), \([\Sigma]\neq 0\in H_2(X,\mathbb Z)\), \(SW(\tilde P)\neq 0\), and \(c_1(L)[\Sigma]=0\), where \(L\) is the determinant line bundle associated with \(\tilde P\), then \(\chi(\Sigma)+\Sigma\cdot\Sigma=0\). – Name: TypeDocument Label: Document Type Group: TypDoc Data: Article – Name: Format Label: File Description Group: SrcInfo Data: application/xml – Name: DOI Label: DOI Group: ID Data: 10.4134/bkms.2003.40.1.017 – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://zbmath.org/1990038" linkWindow="_blank">https://zbmath.org/1990038</link> – Name: AN Label: Accession Number Group: ID Data: edsair.c2b0b933574d..88b26d4c3e0daf4e180cd94e4ce9b15e |
| PLink | https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.c2b0b933574d..88b26d4c3e0daf4e180cd94e4ce9b15e |
| RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.4134/bkms.2003.40.1.017 Languages: – Text: Undetermined Subjects: – SubjectFull: General low-dimensional topology Type: general – SubjectFull: Applications of global analysis to structures on manifolds Type: general – SubjectFull: Equivariant algebraic topology of manifolds Type: general – SubjectFull: involutions Type: general – SubjectFull: 4-manifold with a \(\mathbb{Z}_p\)-action Type: general – SubjectFull: equivariant Type: general – SubjectFull: Finite transformation groups Type: general – SubjectFull: moduli space Type: general – SubjectFull: \(\text{Spin}^c\)-structure Type: general – SubjectFull: Seiberg-Witten equations Type: general – SubjectFull: Specialized structures on manifolds (spin manifolds, framed manifolds, etc.) Type: general Titles: – TitleFull: \(\mathbb Z_p\)-equivariant Spin\(^c\)-structures Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Cho, Yong Seung – PersonEntity: Name: NameFull: Hong, Yoon Hi IsPartOfRelationships: – BibEntity: Identifiers: – Type: issn-locals Value: edsair |
| ResultId | 1 |
Nájsť tento článok vo Web of Science