\(\mathbb Z_p\)-equivariant Spin\(^c\)-structures

Uložené v:
Podrobná bibliografia
Názov: \(\mathbb Z_p\)-equivariant Spin\(^c\)-structures
Autori: Cho, Yong Seung, Hong, Yoon Hi
Informácie o vydavateľovi: Korean Mathematical Society, Seoul
Predmety: General low-dimensional topology, Applications of global analysis to structures on manifolds, Equivariant algebraic topology of manifolds, involutions, 4-manifold with a \(\mathbb{Z}_p\)-action, equivariant, Finite transformation groups, moduli space, \(\text{Spin}^c\)-structure, Seiberg-Witten equations, Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)
Popis: Let \(X\) be a closed, oriented, Riemannian \(4\)-manifold with a \(\mathbb Z_p\)-action \(\sigma\) and a \(\text{Spin}^c\)-structure \(\tilde P\) equivariant with respect to some lift of \(\sigma\). The authors consider Seiberg-Witten equations, define an invariant moduli space and calculate its virtual dimension. As an application to orientation preserving involutions, the authors show that if, in addition to above assumptions, the manifold \(X\) is of simple type, \(b_2^+(X)>1\), the set of fixed points \(\Sigma\) is an oriented, connected, compact \(2\)-dimensional submanifold, \(\Sigma\cdot\Sigma\geq 0\), \([\Sigma]\neq 0\in H_2(X,\mathbb Z)\), \(SW(\tilde P)\neq 0\), and \(c_1(L)[\Sigma]=0\), where \(L\) is the determinant line bundle associated with \(\tilde P\), then \(\chi(\Sigma)+\Sigma\cdot\Sigma=0\).
Druh dokumentu: Article
Popis súboru: application/xml
DOI: 10.4134/bkms.2003.40.1.017
Prístupová URL adresa: https://zbmath.org/1990038
Prístupové číslo: edsair.c2b0b933574d..88b26d4c3e0daf4e180cd94e4ce9b15e
Databáza: OpenAIRE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://explore.openaire.eu/search/publication?articleId=c2b0b933574d%3A%3A88b26d4c3e0daf4e180cd94e4ce9b15e
    Name: EDS - OpenAIRE (s4221598)
    Category: fullText
    Text: View record at OpenAIRE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Cho%20YS
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsair
DbLabel: OpenAIRE
An: edsair.c2b0b933574d..88b26d4c3e0daf4e180cd94e4ce9b15e
RelevancyScore: 685
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 685
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: \(\mathbb Z_p\)-equivariant Spin\(^c\)-structures
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Cho%2C+Yong+Seung%22">Cho, Yong Seung</searchLink><br /><searchLink fieldCode="AR" term="%22Hong%2C+Yoon+Hi%22">Hong, Yoon Hi</searchLink>
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Korean Mathematical Society, Seoul
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22General+low-dimensional+topology%22">General low-dimensional topology</searchLink><br /><searchLink fieldCode="DE" term="%22Applications+of+global+analysis+to+structures+on+manifolds%22">Applications of global analysis to structures on manifolds</searchLink><br /><searchLink fieldCode="DE" term="%22Equivariant+algebraic+topology+of+manifolds%22">Equivariant algebraic topology of manifolds</searchLink><br /><searchLink fieldCode="DE" term="%22involutions%22">involutions</searchLink><br /><searchLink fieldCode="DE" term="%224-manifold+with+a+%5C%28%5Cmathbb{Z}%5Fp%5C%29-action%22">4-manifold with a \(\mathbb{Z}_p\)-action</searchLink><br /><searchLink fieldCode="DE" term="%22equivariant%22">equivariant</searchLink><br /><searchLink fieldCode="DE" term="%22Finite+transformation+groups%22">Finite transformation groups</searchLink><br /><searchLink fieldCode="DE" term="%22moduli+space%22">moduli space</searchLink><br /><searchLink fieldCode="DE" term="%22%5C%28%5Ctext{Spin}^c%5C%29-structure%22">\(\text{Spin}^c\)-structure</searchLink><br /><searchLink fieldCode="DE" term="%22Seiberg-Witten+equations%22">Seiberg-Witten equations</searchLink><br /><searchLink fieldCode="DE" term="%22Specialized+structures+on+manifolds+%28spin+manifolds%2C+framed+manifolds%2C+etc%2E%29%22">Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Let \(X\) be a closed, oriented, Riemannian \(4\)-manifold with a \(\mathbb Z_p\)-action \(\sigma\) and a \(\text{Spin}^c\)-structure \(\tilde P\) equivariant with respect to some lift of \(\sigma\). The authors consider Seiberg-Witten equations, define an invariant moduli space and calculate its virtual dimension. As an application to orientation preserving involutions, the authors show that if, in addition to above assumptions, the manifold \(X\) is of simple type, \(b_2^+(X)>1\), the set of fixed points \(\Sigma\) is an oriented, connected, compact \(2\)-dimensional submanifold, \(\Sigma\cdot\Sigma\geq 0\), \([\Sigma]\neq 0\in H_2(X,\mathbb Z)\), \(SW(\tilde P)\neq 0\), and \(c_1(L)[\Sigma]=0\), where \(L\) is the determinant line bundle associated with \(\tilde P\), then \(\chi(\Sigma)+\Sigma\cdot\Sigma=0\).
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/xml
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.4134/bkms.2003.40.1.017
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://zbmath.org/1990038" linkWindow="_blank">https://zbmath.org/1990038</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsair.c2b0b933574d..88b26d4c3e0daf4e180cd94e4ce9b15e
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.c2b0b933574d..88b26d4c3e0daf4e180cd94e4ce9b15e
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.4134/bkms.2003.40.1.017
    Languages:
      – Text: Undetermined
    Subjects:
      – SubjectFull: General low-dimensional topology
        Type: general
      – SubjectFull: Applications of global analysis to structures on manifolds
        Type: general
      – SubjectFull: Equivariant algebraic topology of manifolds
        Type: general
      – SubjectFull: involutions
        Type: general
      – SubjectFull: 4-manifold with a \(\mathbb{Z}_p\)-action
        Type: general
      – SubjectFull: equivariant
        Type: general
      – SubjectFull: Finite transformation groups
        Type: general
      – SubjectFull: moduli space
        Type: general
      – SubjectFull: \(\text{Spin}^c\)-structure
        Type: general
      – SubjectFull: Seiberg-Witten equations
        Type: general
      – SubjectFull: Specialized structures on manifolds (spin manifolds, framed manifolds, etc.)
        Type: general
    Titles:
      – TitleFull: \(\mathbb Z_p\)-equivariant Spin\(^c\)-structures
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Cho, Yong Seung
      – PersonEntity:
          Name:
            NameFull: Hong, Yoon Hi
    IsPartOfRelationships:
      – BibEntity:
          Identifiers:
            – Type: issn-locals
              Value: edsair
ResultId 1