Podrobná bibliografia
| Názov: |
Global regularity of the \(\bar\partial\)-Neumann problem on an annulus between two pseudoconvex manifolds which satisfy property (P) |
| Autori: |
Cho, Hong Rae |
| Informácie o vydavateľovi: |
Springer, Berlin/Heidelberg |
| Predmety: |
pseudoconvex manifolds, \(\overline{\partial}\)-Neumann problem, Pseudoconvex domains, Catlin condition, \(\overline\partial\) and \(\overline\partial\)-Neumann operators |
| Popis: |
Let \(X\) be a complex manifold of dimension \(n\) and \(\Omega\Subset X\) be an open submanifold with smooth boundary. The paper concerns the \(\overline{\partial}\)-Neumann problem on \(\Omega\). The main result is Theorem. Let \(n\geq 3\). Let \(\Omega_1,\Omega_2\) be two open pseudoconvex manifolds with smooth boundary such that \(\Omega_1\Subset \Omega_2\Subset X\). Suppose that \(b\Omega_1\) and \(b\Omega_2\) satisfy the Catlin condition. Let \(\Omega= \Omega_2\setminus \overline{\Omega}_1\). Then the compactness estimate for \((p,q)\)-forms, \(0 |
| Druh dokumentu: |
Article |
| Popis súboru: |
application/xml |
| DOI: |
10.1007/bf02568317 |
| Prístupová URL adresa: |
https://zbmath.org/980706 |
| Prístupové číslo: |
edsair.c2b0b933574d..65e9abf78b05f6f6707ea7bb647c98f0 |
| Databáza: |
OpenAIRE |