Podrobná bibliografie
| Název: |
A transformation formula of a singular integral on a closed smooth manifold |
| Autoři: |
Lin, Liangyu, Qiu, Chunhui |
| Informace o vydavateli: |
Editorial Department of Journal of Xiamen University, Fujian, Xiamen |
| Témata: |
singular integral, Singular integrals of functions in several complex variables, transformation formula, composite formula |
| Popis: |
Summary: Let \(D\) be a bounded domain in \(\mathbb{C}^n\) space, \(n\geq 2\), and its boundary \(\partial D\) be an orientable manifold of class \(C^{(1)}\). \(K(\zeta,\xi)\) denotes the Bochner-Martinelli kernel, where \(\zeta,\xi\in\partial D\); \(|\zeta-\xi|\) the Euclidean distance between \(\zeta\) and \(\xi\). We prove that if \(\varphi\in H(\alpha,\partial D)\), \(0 |
| Druh dokumentu: |
Article |
| Popis souboru: |
application/xml |
| Přístupová URL adresa: |
https://zbmath.org/1610463 |
| Přístupové číslo: |
edsair.c2b0b933574d..65c9d1f59134744580c9ffdd0e97292f |
| Databáze: |
OpenAIRE |