A transformation formula of a singular integral on a closed smooth manifold

Uloženo v:
Podrobná bibliografie
Název: A transformation formula of a singular integral on a closed smooth manifold
Autoři: Lin, Liangyu, Qiu, Chunhui
Informace o vydavateli: Editorial Department of Journal of Xiamen University, Fujian, Xiamen
Témata: singular integral, Singular integrals of functions in several complex variables, transformation formula, composite formula
Popis: Summary: Let \(D\) be a bounded domain in \(\mathbb{C}^n\) space, \(n\geq 2\), and its boundary \(\partial D\) be an orientable manifold of class \(C^{(1)}\). \(K(\zeta,\xi)\) denotes the Bochner-Martinelli kernel, where \(\zeta,\xi\in\partial D\); \(|\zeta-\xi|\) the Euclidean distance between \(\zeta\) and \(\xi\). We prove that if \(\varphi\in H(\alpha,\partial D)\), \(0
Druh dokumentu: Article
Popis souboru: application/xml
Přístupová URL adresa: https://zbmath.org/1610463
Přístupové číslo: edsair.c2b0b933574d..65c9d1f59134744580c9ffdd0e97292f
Databáze: OpenAIRE
Popis
Abstrakt:Summary: Let \(D\) be a bounded domain in \(\mathbb{C}^n\) space, \(n\geq 2\), and its boundary \(\partial D\) be an orientable manifold of class \(C^{(1)}\). \(K(\zeta,\xi)\) denotes the Bochner-Martinelli kernel, where \(\zeta,\xi\in\partial D\); \(|\zeta-\xi|\) the Euclidean distance between \(\zeta\) and \(\xi\). We prove that if \(\varphi\in H(\alpha,\partial D)\), \(0