The boundary curve of pseudospectrum and the stepsize control of curve tracing algorithm

Gespeichert in:
Bibliographische Detailangaben
Titel: The boundary curve of pseudospectrum and the stepsize control of curve tracing algorithm
Autoren: Liu, Ying, Bai, Fengshan
Verlagsinformationen: Nanjing University, Department of Mathematics, Nanjing
Schlagwörter: Numerical computation of eigenvalues and eigenvectors of matrices, stepsize control, curve tracing algorithm, algorithm, continuation method, Numerical results, pseudospectrum, prediction-correction scheme, bifurcation point, Global methods, including homotopy approaches to the numerical solution of nonlinear equations
Beschreibung: Summary: The boundary curve of the pseudospectrum is defined as a contour line of its resolvent norm. The curve tracing algorithm is a rather simple continuation method, which determines this curve by a prediction-correction scheme. But this algorithm can not deal with the bifurcation point where the resolvent norm is not differentiable. Due to this defect we investigate the smoothness of the boundary curve, and give a method of stepsize control which can deal with bifurcation points. Numerical results are also presented.
Publikationsart: Article
Dateibeschreibung: application/xml
Zugangs-URL: https://zbmath.org/2068271
Dokumentencode: edsair.c2b0b933574d..57b6d4de91ed897e9f81bf508b9b6fe2
Datenbank: OpenAIRE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://explore.openaire.eu/search/publication?articleId=c2b0b933574d%3A%3A57b6d4de91ed897e9f81bf508b9b6fe2
    Name: EDS - OpenAIRE (s4221598)
    Category: fullText
    Text: View record at OpenAIRE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Liu%20Y
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsair
DbLabel: OpenAIRE
An: edsair.c2b0b933574d..57b6d4de91ed897e9f81bf508b9b6fe2
RelevancyScore: 685
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 685
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: The boundary curve of pseudospectrum and the stepsize control of curve tracing algorithm
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Liu%2C+Ying%22">Liu, Ying</searchLink><br /><searchLink fieldCode="AR" term="%22Bai%2C+Fengshan%22">Bai, Fengshan</searchLink>
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Nanjing University, Department of Mathematics, Nanjing
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Numerical+computation+of+eigenvalues+and+eigenvectors+of+matrices%22">Numerical computation of eigenvalues and eigenvectors of matrices</searchLink><br /><searchLink fieldCode="DE" term="%22stepsize+control%22">stepsize control</searchLink><br /><searchLink fieldCode="DE" term="%22curve+tracing+algorithm%22">curve tracing algorithm</searchLink><br /><searchLink fieldCode="DE" term="%22algorithm%22">algorithm</searchLink><br /><searchLink fieldCode="DE" term="%22continuation+method%22">continuation method</searchLink><br /><searchLink fieldCode="DE" term="%22Numerical+results%22">Numerical results</searchLink><br /><searchLink fieldCode="DE" term="%22pseudospectrum%22">pseudospectrum</searchLink><br /><searchLink fieldCode="DE" term="%22prediction-correction+scheme%22">prediction-correction scheme</searchLink><br /><searchLink fieldCode="DE" term="%22bifurcation+point%22">bifurcation point</searchLink><br /><searchLink fieldCode="DE" term="%22Global+methods%2C+including+homotopy+approaches+to+the+numerical+solution+of+nonlinear+equations%22">Global methods, including homotopy approaches to the numerical solution of nonlinear equations</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Summary: The boundary curve of the pseudospectrum is defined as a contour line of its resolvent norm. The curve tracing algorithm is a rather simple continuation method, which determines this curve by a prediction-correction scheme. But this algorithm can not deal with the bifurcation point where the resolvent norm is not differentiable. Due to this defect we investigate the smoothness of the boundary curve, and give a method of stepsize control which can deal with bifurcation points. Numerical results are also presented.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/xml
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://zbmath.org/2068271" linkWindow="_blank">https://zbmath.org/2068271</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsair.c2b0b933574d..57b6d4de91ed897e9f81bf508b9b6fe2
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.c2b0b933574d..57b6d4de91ed897e9f81bf508b9b6fe2
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Text: Undetermined
    Subjects:
      – SubjectFull: Numerical computation of eigenvalues and eigenvectors of matrices
        Type: general
      – SubjectFull: stepsize control
        Type: general
      – SubjectFull: curve tracing algorithm
        Type: general
      – SubjectFull: algorithm
        Type: general
      – SubjectFull: continuation method
        Type: general
      – SubjectFull: Numerical results
        Type: general
      – SubjectFull: pseudospectrum
        Type: general
      – SubjectFull: prediction-correction scheme
        Type: general
      – SubjectFull: bifurcation point
        Type: general
      – SubjectFull: Global methods, including homotopy approaches to the numerical solution of nonlinear equations
        Type: general
    Titles:
      – TitleFull: The boundary curve of pseudospectrum and the stepsize control of curve tracing algorithm
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Liu, Ying
      – PersonEntity:
          Name:
            NameFull: Bai, Fengshan
    IsPartOfRelationships:
      – BibEntity:
          Identifiers:
            – Type: issn-locals
              Value: edsair
ResultId 1