Podrobná bibliografie
| Název: |
A fast algorithm for two-dimensional vector-radix discrete sine transform-II |
| Autoři: |
Wu, Yiquan, Zhu, Zhaoda |
| Informace o vydavateli: |
Nanjing University of Aeronautics \& Astronautics, Nanjing |
| Témata: |
Signal theory (characterization, reconstruction, filtering, etc.), Complexity and performance of numerical algorithms, fast recursive algorithm, computational complexity, numerical stability, signal processing, Numerical methods for discrete and fast Fourier transforms, two-dimensional discrete sine transform-II |
| Popis: |
The two-dimensional discrete sine transform (2-D DST) plays an important role in signal processing. In this paper a fast recursive algorithm for the one-dimensional discrete sine transform-II (1-D DST-II) is extended to the two-dimensional case. The approach decomposes the \((N\times N)\)- point DST-II into four \((N/2\times N/2)\)-point DST-II's. Finally, the computational complexity is analyzed. Compared with the commonly used row-column method, it is numerically stable and saves 25\% multiplication operations. |
| Druh dokumentu: |
Article |
| Popis souboru: |
application/xml |
| Přístupová URL adresa: |
https://zbmath.org/613348 |
| Přístupové číslo: |
edsair.c2b0b933574d..2bdb7afd8dd4e4a7023a1b07f18bc90b |
| Databáze: |
OpenAIRE |