On the construction of entire and meromorphic functions of several variables having specified growth, and some applications

Uloženo v:
Podrobná bibliografie
Název: On the construction of entire and meromorphic functions of several variables having specified growth, and some applications
Autoři: Sekerin, A. B.
Informace o vydavateli: American Mathematical Society (AMS), Providence, RI
Témata: representation of analytic functions in several variables by exponential series, meromorphic function, Special classes of entire functions of one complex variable and growth estimates, Other generalizations of function theory of one complex variable, Meromorphic functions of one complex variable (general theory), approximation, Harmonic, subharmonic, superharmonic functions in higher dimensions, subharmonic functions
Popis: The author generalizes a result concerning the approximation of differences of certain subharmonic functions in \(\mathbb{C} = \mathbb{R}^2\) by the logarithm of the modulus of a meromorphic function to the higher dimensional case. The main result is: Let \(u\) be the difference of subharmonic functions in \(\mathbb{C}^n\) such that \[ |u(z) |\leq c (\varepsilon) |z |^{\rho + \varepsilon} \] \(0 < \rho < 2\), for any \(\varepsilon > 0\) outside a countable union of balls with finite sum of radii, then there are entire functions \(L_1\), \(L_2\) such that outside a \(C_0\)-set \[ \bigl |u(z) - \ln |L_1 (z)/L_2 (z) |\bigr |\leq C \bigl( \ln |z |\bigr)^3 |z |^{\rho (1 - 1/2n}). \] This result is applied to the representation of analytic functions in several variables by exponential series.
Druh dokumentu: Article
Popis souboru: application/xml
Přístupová URL adresa: https://zbmath.org/738900
Přístupové číslo: edsair.c2b0b933574d..2a09b0ef0e9dce7e2c3c2c88e39b2bbe
Databáze: OpenAIRE
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://explore.openaire.eu/search/publication?articleId=c2b0b933574d%3A%3A2a09b0ef0e9dce7e2c3c2c88e39b2bbe
    Name: EDS - OpenAIRE (s4221598)
    Category: fullText
    Text: View record at OpenAIRE
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Sekerin%20AB
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edsair
DbLabel: OpenAIRE
An: edsair.c2b0b933574d..2a09b0ef0e9dce7e2c3c2c88e39b2bbe
RelevancyScore: 685
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 685
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: On the construction of entire and meromorphic functions of several variables having specified growth, and some applications
– Name: Author
  Label: Authors
  Group: Au
  Data: &lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Sekerin%2C+A%2E+B%2E%22&quot;&gt;Sekerin, A. B.&lt;/searchLink&gt;
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: American Mathematical Society (AMS), Providence, RI
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: &lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22representation+of+analytic+functions+in+several+variables+by+exponential+series%22&quot;&gt;representation of analytic functions in several variables by exponential series&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22meromorphic+function%22&quot;&gt;meromorphic function&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22Special+classes+of+entire+functions+of+one+complex+variable+and+growth+estimates%22&quot;&gt;Special classes of entire functions of one complex variable and growth estimates&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22Other+generalizations+of+function+theory+of+one+complex+variable%22&quot;&gt;Other generalizations of function theory of one complex variable&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22Meromorphic+functions+of+one+complex+variable+%28general+theory%29%22&quot;&gt;Meromorphic functions of one complex variable (general theory)&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22approximation%22&quot;&gt;approximation&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22Harmonic%2C+subharmonic%2C+superharmonic+functions+in+higher+dimensions%22&quot;&gt;Harmonic, subharmonic, superharmonic functions in higher dimensions&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22subharmonic+functions%22&quot;&gt;subharmonic functions&lt;/searchLink&gt;
– Name: Abstract
  Label: Description
  Group: Ab
  Data: The author generalizes a result concerning the approximation of differences of certain subharmonic functions in \(\mathbb{C} = \mathbb{R}^2\) by the logarithm of the modulus of a meromorphic function to the higher dimensional case. The main result is: Let \(u\) be the difference of subharmonic functions in \(\mathbb{C}^n\) such that \[ |u(z) |\leq c (\varepsilon) |z |^{\rho + \varepsilon} \] \(0 &lt; \rho &lt; 2\), for any \(\varepsilon &gt; 0\) outside a countable union of balls with finite sum of radii, then there are entire functions \(L_1\), \(L_2\) such that outside a \(C_0\)-set \[ \bigl |u(z) - \ln |L_1 (z)/L_2 (z) |\bigr |\leq C \bigl( \ln |z |\bigr)^3 |z |^{\rho (1 - 1/2n}). \] This result is applied to the representation of analytic functions in several variables by exponential series.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: application/xml
– Name: URL
  Label: Access URL
  Group: URL
  Data: &lt;link linkTarget=&quot;URL&quot; linkTerm=&quot;https://zbmath.org/738900&quot; linkWindow=&quot;_blank&quot;&gt;https://zbmath.org/738900&lt;/link&gt;
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsair.c2b0b933574d..2a09b0ef0e9dce7e2c3c2c88e39b2bbe
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsair&AN=edsair.c2b0b933574d..2a09b0ef0e9dce7e2c3c2c88e39b2bbe
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Text: Undetermined
    Subjects:
      – SubjectFull: representation of analytic functions in several variables by exponential series
        Type: general
      – SubjectFull: meromorphic function
        Type: general
      – SubjectFull: Special classes of entire functions of one complex variable and growth estimates
        Type: general
      – SubjectFull: Other generalizations of function theory of one complex variable
        Type: general
      – SubjectFull: Meromorphic functions of one complex variable (general theory)
        Type: general
      – SubjectFull: approximation
        Type: general
      – SubjectFull: Harmonic, subharmonic, superharmonic functions in higher dimensions
        Type: general
      – SubjectFull: subharmonic functions
        Type: general
    Titles:
      – TitleFull: On the construction of entire and meromorphic functions of several variables having specified growth, and some applications
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Sekerin, A. B.
    IsPartOfRelationships:
      – BibEntity:
          Identifiers:
            – Type: issn-locals
              Value: edsair
ResultId 1