Podrobná bibliografia
| Názov: |
A superlinearly convergent feasible descent algorithm for nonlinear optimization |
| Autori: |
Jian, Jinbao |
| Informácie o vydavateľovi: |
Wuhan University, Wuchang |
| Predmety: |
superlinearly convergent feasible descent algorithm, Applications of renewal theory (reliability, demand theory, etc.), Nonlinear programming |
| Popis: |
The author considers the following problem: \((p)\) \(\min \{f_0 (x)|x \in R\}\), where \(R = \{x \in E^n |f_i (x) \leq 0\), \(j \in L_1\); \(f_j (x) = 0\), \(j \in L_2\}\), and discusses optimization with nonlinear equality and inequality constraints. The author presents a new algorithm possessing the following properties: (1) The algorithm is a feasible descent method for the expansive problems and the parameter adjusts automatically only for finite time; (2) only one quadratic program needs to be solved at each iteration; (3) It superlinearly converges to the solution of the original problem under some suitable assumption. |
| Druh dokumentu: |
Article |
| Popis súboru: |
application/xml |
| Prístupová URL adresa: |
https://zbmath.org/883157 |
| Prístupové číslo: |
edsair.c2b0b933574d..0c8c93bc143425ade3a62a914d217c67 |
| Databáza: |
OpenAIRE |