Analyzing and Improving the Image Quality of StyleGAN 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Uloženo v:
Podrobná bibliografie
Název: Analyzing and Improving the Image Quality of StyleGAN 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Autoři: Karras, T., Laine, Samuli, Aittala, M., Hellsten, J., Lehtinen, J., Aila
Zdroj: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. :8107-8116
Informace o vydavateli: 2020.
Rok vydání: 2020
Témata: ta113, Modulation, Measurement, Standards, unconditional image modeling, data visualisation, generator normalization, style-based GAN architecture, data-driven unconditional generative image modeling, distribution quality metrics, unsupervised learning, Convolution, Generators, StyleGAN architecture, perceived image quality, Image resolution, Training, neural net architecture, image coding, image resolution
Druh dokumentu: Conference object
Jazyk: English
ISSN: 1063-6919
DOI: 10.1109/cvpr42600.2020.00813
Přístupová URL adresa: http://juuli.fi/Record/0371030520
Přístupové číslo: edsair.CSC...........3749ed8e55b44f3ac890d3d58a3cd027
Databáze: OpenAIRE
Popis
ISSN:10636919
DOI:10.1109/cvpr42600.2020.00813