Hybrid electro search with genetic algorithm for task scheduling in cloud computing.

Gespeichert in:
Bibliographische Detailangaben
Titel: Hybrid electro search with genetic algorithm for task scheduling in cloud computing.
Autoren: Velliangiri, S.1 (AUTHOR), Karthikeyan, P.2 (AUTHOR), Arul Xavier, V.M.3 (AUTHOR), Baswaraj, D.4 (AUTHOR)
Quelle: Ain Shams Engineering Journal. Mar2021, Vol. 12 Issue 1, p631-639. 9p.
Schlagwörter: Genetic algorithms, Search algorithms, Cloud computing, On-demand computing, Particle swarm optimization, Load balancing (Computer networks), Working class, Production scheduling
Abstract: Cloud computing is on-demand Internet-based computing, which is a highly scalable service adopted by different working and non-working classes of people around the globe. Task scheduling one of the critical applications used by end-users and cloud service providers. The significant challenging in the task scheduler is to find an optimal resource for the given input task. In this paper, we proposed Hybrid Electro Search with a genetic algorithm (HESGA) to improve the behavior of task scheduling by considering parameters such as makespan, load balancing, utilization of resources, and cost of the multi-cloud. The proposed method combined the advantage of a genetic algorithm and an electro search algorithm. The genetic algorithm provides the best local optimal solutions, whereas the Electro search algorithm provides the best global optima solutions. The proposed algorithm outperforms than existing scheduling algorithms such as Hybrid Particle Swarm Optimization Genetic Algorithm (HPSOGA), GA, ES, and ACO. [ABSTRACT FROM AUTHOR]
Datenbank: Supplemental Index
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edo&genre=article&issn=20904479&ISBN=&volume=12&issue=1&date=20210301&spage=631&pages=631-639&title=Ain Shams Engineering Journal&atitle=Hybrid%20electro%20search%20with%20genetic%20algorithm%20for%20task%20scheduling%20in%20cloud%20computing.&aulast=Velliangiri%2C%20S.&id=DOI:10.1016/j.asej.2020.07.003
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Velliangiri%20S
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edo
DbLabel: Supplemental Index
An: 149076863
RelevancyScore: 916
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 915.632019042969
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Hybrid electro search with genetic algorithm for task scheduling in cloud computing.
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Velliangiri%2C+S%2E%22">Velliangiri, S.</searchLink><relatesTo>1</relatesTo> (AUTHOR)<br /><searchLink fieldCode="AR" term="%22Karthikeyan%2C+P%2E%22">Karthikeyan, P.</searchLink><relatesTo>2</relatesTo> (AUTHOR)<br /><searchLink fieldCode="AR" term="%22Arul+Xavier%2C+V%2EM%2E%22">Arul Xavier, V.M.</searchLink><relatesTo>3</relatesTo> (AUTHOR)<br /><searchLink fieldCode="AR" term="%22Baswaraj%2C+D%2E%22">Baswaraj, D.</searchLink><relatesTo>4</relatesTo> (AUTHOR)
– Name: TitleSource
  Label: Source
  Group: Src
  Data: <searchLink fieldCode="JN" term="%22Ain+Shams+Engineering+Journal%22">Ain Shams Engineering Journal</searchLink>. Mar2021, Vol. 12 Issue 1, p631-639. 9p.
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Genetic+algorithms%22">Genetic algorithms</searchLink><br /><searchLink fieldCode="DE" term="%22Search+algorithms%22">Search algorithms</searchLink><br /><searchLink fieldCode="DE" term="%22Cloud+computing%22">Cloud computing</searchLink><br /><searchLink fieldCode="DE" term="%22On-demand+computing%22">On-demand computing</searchLink><br /><searchLink fieldCode="DE" term="%22Particle+swarm+optimization%22">Particle swarm optimization</searchLink><br /><searchLink fieldCode="DE" term="%22Load+balancing+%28Computer+networks%29%22">Load balancing (Computer networks)</searchLink><br /><searchLink fieldCode="DE" term="%22Working+class%22">Working class</searchLink><br /><searchLink fieldCode="DE" term="%22Production+scheduling%22">Production scheduling</searchLink>
– Name: Abstract
  Label: Abstract
  Group: Ab
  Data: Cloud computing is on-demand Internet-based computing, which is a highly scalable service adopted by different working and non-working classes of people around the globe. Task scheduling one of the critical applications used by end-users and cloud service providers. The significant challenging in the task scheduler is to find an optimal resource for the given input task. In this paper, we proposed Hybrid Electro Search with a genetic algorithm (HESGA) to improve the behavior of task scheduling by considering parameters such as makespan, load balancing, utilization of resources, and cost of the multi-cloud. The proposed method combined the advantage of a genetic algorithm and an electro search algorithm. The genetic algorithm provides the best local optimal solutions, whereas the Electro search algorithm provides the best global optima solutions. The proposed algorithm outperforms than existing scheduling algorithms such as Hybrid Particle Swarm Optimization Genetic Algorithm (HPSOGA), GA, ES, and ACO. [ABSTRACT FROM AUTHOR]
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edo&AN=149076863
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1016/j.asej.2020.07.003
    Languages:
      – Code: eng
        Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 9
        StartPage: 631
    Subjects:
      – SubjectFull: Genetic algorithms
        Type: general
      – SubjectFull: Search algorithms
        Type: general
      – SubjectFull: Cloud computing
        Type: general
      – SubjectFull: On-demand computing
        Type: general
      – SubjectFull: Particle swarm optimization
        Type: general
      – SubjectFull: Load balancing (Computer networks)
        Type: general
      – SubjectFull: Working class
        Type: general
      – SubjectFull: Production scheduling
        Type: general
    Titles:
      – TitleFull: Hybrid electro search with genetic algorithm for task scheduling in cloud computing.
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Velliangiri, S.
      – PersonEntity:
          Name:
            NameFull: Karthikeyan, P.
      – PersonEntity:
          Name:
            NameFull: Arul Xavier, V.M.
      – PersonEntity:
          Name:
            NameFull: Baswaraj, D.
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 03
              Text: Mar2021
              Type: published
              Y: 2021
          Identifiers:
            – Type: issn-print
              Value: 20904479
          Numbering:
            – Type: volume
              Value: 12
            – Type: issue
              Value: 1
          Titles:
            – TitleFull: Ain Shams Engineering Journal
              Type: main
ResultId 1