Correlation Analysis of Geological Disaster Density and Soil and Water Conservation Prevention and Control Capacity: A Case Study of Guangdong Province.

Uloženo v:
Podrobná bibliografie
Název: Correlation Analysis of Geological Disaster Density and Soil and Water Conservation Prevention and Control Capacity: A Case Study of Guangdong Province.
Autoři: Lu, Yaping, Fu, Jingcheng, Tang, Li
Zdroj: Water (20734441); Sep2025, Vol. 17 Issue 17, p2527, 20p
Témata: SOIL conservation, CLIMATE change, PROVINCES, SLOPES (Soil mechanics), GROUND vegetation cover, NATURAL disasters, MACHINE learning, GEOGRAPHIC spatial analysis
Geografický termín: GUANGDONG Sheng (China), CHINA
Abstrakt: This study investigates the spatial coupling between geohazard susceptibility and soil conservation capacity in Guangdong Province, China, using integrated spatial analysis and machine learning approaches. Through kernel density estimation, hotspot analysis, principal component analysis (PCA), and t-SNE clustering applied to 11,252 geohazard records and nine soil conservation factors, we identify three critical mechanisms: (1) Topographic steepness (LS factor) constitutes the primary control on geohazard distribution (r = 0.162, p < 0.001), with high-risk clusters concentrated in northeastern mountainous regions (Meizhou-Huizhou-Heyuan); (2) Vegetation coverage (C_mean) mediates rainfall impacts, exhibiting significant risk reduction (r = −0.099, p < 0.001) despite counterintuitive negative correlations with mean rainfall erosivity; (3) Soil conservation effectiveness depends on topographic context, reducing geohazard density in moderate slopes (Cluster 0: 527.04) but proving insufficient in extreme terrain (Cluster 2: LS = 20.587). The emerging role of rainfall variability (R_slope, r = 0.183) highlights climate change impacts. [ABSTRACT FROM AUTHOR]
Copyright of Water (20734441) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáze: Biomedical Index
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edm&genre=article&issn=20734441&ISBN=&volume=17&issue=17&date=20250901&spage=2527&pages=2527-2546&title=Water (20734441)&atitle=Correlation%20Analysis%20of%20Geological%20Disaster%20Density%20and%20Soil%20and%20Water%20Conservation%20Prevention%20and%20Control%20Capacity%3A%20A%20Case%20Study%20of%20Guangdong%20Province.&aulast=Lu%2C%20Yaping&id=DOI:10.3390/w17172527
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Lu%20Y
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edm
DbLabel: Biomedical Index
An: 187980987
RelevancyScore: 1060
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1060.48913574219
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Correlation Analysis of Geological Disaster Density and Soil and Water Conservation Prevention and Control Capacity: A Case Study of Guangdong Province.
– Name: Author
  Label: Authors
  Group: Au
  Data: &lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Lu%2C+Yaping%22&quot;&gt;Lu, Yaping&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Fu%2C+Jingcheng%22&quot;&gt;Fu, Jingcheng&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Tang%2C+Li%22&quot;&gt;Tang, Li&lt;/searchLink&gt;
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Water (20734441); Sep2025, Vol. 17 Issue 17, p2527, 20p
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: &lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22SOIL+conservation%22&quot;&gt;SOIL conservation&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22CLIMATE+change%22&quot;&gt;CLIMATE change&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22PROVINCES%22&quot;&gt;PROVINCES&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22SLOPES+%28Soil+mechanics%29%22&quot;&gt;SLOPES (Soil mechanics)&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22GROUND+vegetation+cover%22&quot;&gt;GROUND vegetation cover&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22NATURAL+disasters%22&quot;&gt;NATURAL disasters&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22MACHINE+learning%22&quot;&gt;MACHINE learning&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22GEOGRAPHIC+spatial+analysis%22&quot;&gt;GEOGRAPHIC spatial analysis&lt;/searchLink&gt;
– Name: SubjectGeographic
  Label: Geographic Terms
  Group: Su
  Data: &lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22GUANGDONG+Sheng+%28China%29%22&quot;&gt;GUANGDONG Sheng (China)&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22CHINA%22&quot;&gt;CHINA&lt;/searchLink&gt;
– Name: Abstract
  Label: Abstract
  Group: Ab
  Data: This study investigates the spatial coupling between geohazard susceptibility and soil conservation capacity in Guangdong Province, China, using integrated spatial analysis and machine learning approaches. Through kernel density estimation, hotspot analysis, principal component analysis (PCA), and t-SNE clustering applied to 11,252 geohazard records and nine soil conservation factors, we identify three critical mechanisms: (1) Topographic steepness (LS factor) constitutes the primary control on geohazard distribution (r = 0.162, p &lt; 0.001), with high-risk clusters concentrated in northeastern mountainous regions (Meizhou-Huizhou-Heyuan); (2) Vegetation coverage (C_mean) mediates rainfall impacts, exhibiting significant risk reduction (r = −0.099, p &lt; 0.001) despite counterintuitive negative correlations with mean rainfall erosivity; (3) Soil conservation effectiveness depends on topographic context, reducing geohazard density in moderate slopes (Cluster 0: 527.04) but proving insufficient in extreme terrain (Cluster 2: LS = 20.587). The emerging role of rainfall variability (R_slope, r = 0.183) highlights climate change impacts. [ABSTRACT FROM AUTHOR]
– Name: Abstract
  Label:
  Group: Ab
  Data: &lt;i&gt;Copyright of Water (20734441) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder&#39;s express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract.&lt;/i&gt; (Copyright applies to all Abstracts.)
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edm&AN=187980987
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.3390/w17172527
    Languages:
      – Code: eng
        Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 20
        StartPage: 2527
    Subjects:
      – SubjectFull: GUANGDONG Sheng (China)
        Type: general
      – SubjectFull: CHINA
        Type: general
      – SubjectFull: SOIL conservation
        Type: general
      – SubjectFull: CLIMATE change
        Type: general
      – SubjectFull: PROVINCES
        Type: general
      – SubjectFull: SLOPES (Soil mechanics)
        Type: general
      – SubjectFull: GROUND vegetation cover
        Type: general
      – SubjectFull: NATURAL disasters
        Type: general
      – SubjectFull: MACHINE learning
        Type: general
      – SubjectFull: GEOGRAPHIC spatial analysis
        Type: general
    Titles:
      – TitleFull: Correlation Analysis of Geological Disaster Density and Soil and Water Conservation Prevention and Control Capacity: A Case Study of Guangdong Province.
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Lu, Yaping
      – PersonEntity:
          Name:
            NameFull: Fu, Jingcheng
      – PersonEntity:
          Name:
            NameFull: Tang, Li
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 09
              Text: Sep2025
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 20734441
          Numbering:
            – Type: volume
              Value: 17
            – Type: issue
              Value: 17
          Titles:
            – TitleFull: Water (20734441)
              Type: main
ResultId 1