Dynamic Synergy Network Analysis Reveals Stage-Specific Regional Dysfunction in Alzheimer's Disease.

Saved in:
Bibliographic Details
Title: Dynamic Synergy Network Analysis Reveals Stage-Specific Regional Dysfunction in Alzheimer's Disease.
Authors: Zhang, Xiaoyan, Han, Chao, Xia, Jingbo, Deng, Lingli, Dong, Jiyang
Source: Brain Sciences (2076-3425); Jun2025, Vol. 15 Issue 6, p636, 20p
Subject Terms: FUNCTIONAL magnetic resonance imaging, LARGE-scale brain networks, PRODROMAL symptoms, ALZHEIMER'S disease, PARIETAL lobe
Abstract: Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive neurodegeneration and connectivity deterioration. While resting-state functional magnetic resonance imaging (fMRI) provides critical insights into brain network abnormalities, traditional mutual information-based methods exhibit inherent limitations in characterizing the dynamic synergistic mechanisms between cerebral regions. Method: This study pioneered the application of an Integrated Information Decomposition (ΦID) framework in AD brain network analysis, constructing single-sample network models based on ΦID-derived synergy metrics to systematically compare their differences with mutual information-based methods in pathological sensitivity, computational robustness, and network representation capability, while detecting brain regions with declining dynamic synergy during AD progression through intergroup t-tests. Result: The key finding are as follows: (1) synergy metrics exhibited lower intra-group coefficient of variation than mutual information metrics, indicating higher computational stability; (2) single-sample reconstruction significantly enhanced the statistical power in intergroup difference detection; (3) synergy metrics captured brain network features that are undetectable by traditional mutual information methods, with more pronounced differences between networks; (4) key node analysis demonstrated spatiotemporal degradation patterns progressing from initial dysfunction in orbitofrontal–striatal–temporoparietal pathways accompanied by multi-regional impairments during prodromal stages, through moderate-phase decline located in the right middle frontal and postcentral gyri, to advanced-stage degeneration of the right supramarginal gyrus and left inferior parietal lobule. ΦID-driven dynamic synergy network analysis provides novel information integration theory-based biomarkers for AD progression diagnosis and potentially lays the foundation for pathological understanding and subsequent targeted therapy development. [ABSTRACT FROM AUTHOR]
Copyright of Brain Sciences (2076-3425) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Biomedical Index
Be the first to leave a comment!
You must be logged in first