Effects of Different Zinc Content on Solidification, Microstructure, and Mechanical Properties in Tin–Bismuth Alloy.
Saved in:
| Title: | Effects of Different Zinc Content on Solidification, Microstructure, and Mechanical Properties in Tin–Bismuth Alloy. |
|---|---|
| Authors: | de Carvalho, Cássia Carla, Sobral, Bruno Silva, de Sousa, Raí Batista, Paixão, Jeverton Laureano, de Araújo Dantas, Suylan Lourdes, Spinelli, José Eduardo, Silva, Bismarck Luiz |
| Source: | Advanced Engineering Materials; Nov2024, Vol. 26 Issue 21, p1-18, 18p |
| Subject Terms: | TENSILE strength, BINARY metallic systems, TENSILE tests, MICROHARDNESS testing, SCANNING electron microscopy |
| Abstract: | The present aims to evaluate the effect of adding Zn (0.5% and 9.0% in wt%) on phase transformation temperatures, microstructure coarsening, solidification parameters (cooling rate‐T˙$T_{\over{.}}$L and growth rate‐VL), macrosegregation, and mechanical properties of directionally solidified Sn‐34wt%Bi‐xZn alloys. The samples have been characterized by optical microscopy, scanning electron microscopy, X‐ray fluorescence, and X‐ray diffraction, in addition to Vickers microhardness and tensile tests. The CALPHAD method has been used for thermodynamic computations via Thermo‐calc software, in order to obtain thermodynamic data. The microstructure of Sn–Bi–Zn alloys is mainly dendritic, composed of a Sn‐rich matrix (β‐Sn) with Bi precipitates inside and surrounded by a Sn+Bi eutectic mixture of phases, predominantly observed at the coarse scale. Coarse Zn needles are also observed in the Sn‐34wt%Bi‐9wt%Zn alloy due to the high Zn content. On the whole, Zn provoked a coarsening of the dendritic arrangement. Moreover, Zn additions cause inverse segregation of Bi, as compared to the rather constant macrosegregation profile observed in the binary Sn–Bi alloy. On the whole, both additions of Zn (0.5 and 9.0) promoted increase in Vickers microhardness, yield strength (σY), and ultimate tensile strength (σu), however, causing an overall reduction in elongation‐to‐fracture (δ). [ABSTRACT FROM AUTHOR] |
| Copyright of Advanced Engineering Materials is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) | |
| Database: | Biomedical Index |
Be the first to leave a comment!
Full Text Finder
Nájsť tento článok vo Web of Science