Confidence Intervals for Nonparametric Regression Functions with Missing Data.

Gespeichert in:
Bibliographische Detailangaben
Titel: Confidence Intervals for Nonparametric Regression Functions with Missing Data.
Autoren: Qin, Yongsong, Qiu, Tao, Lei, Qingzhu
Quelle: Communications in Statistics: Theory & Methods; Oct2014, Vol. 43 Issue 19, p4123-4142, 20p
Schlagwörter: CONFIDENCE intervals, NONPARAMETRIC estimation, REGRESSION analysis, MATHEMATICAL functions, MISSING data (Statistics), EMPIRICAL research
Abstract: Suppose that we have a nonparametric regression modelY=m(X) + ε withX∈Rp, whereXis a random design variable and is observed completely, andYis the response variable and someY-values are missing at random. Based on the “complete” data sets forYafter nonaprametric regression imputation and inverse probability weighted imputation, two estimators of the regression functionm(x0) for fixedx0∈Rpare proposed. Asymptotic normality of two estimators is established, which is used to construct normal approximation-based confidence intervals form(x0). We also construct an empirical likelihood (EL) statistic form(x0) with limiting distribution of χ21, which is used to construct an EL confidence interval form(x0). [ABSTRACT FROM PUBLISHER]
Copyright of Communications in Statistics: Theory & Methods is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Complementary Index
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edb&genre=article&issn=03610926&ISBN=&volume=43&issue=19&date=20141001&spage=4123&pages=4123-4142&title=Communications in Statistics: Theory & Methods&atitle=Confidence%20Intervals%20for%20Nonparametric%20Regression%20Functions%20with%20Missing%20Data.&aulast=Qin%2C%20Yongsong&id=DOI:10.1080/03610926.2012.705210
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Qin%20Y
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edb
DbLabel: Complementary Index
An: 98605269
RelevancyScore: 837
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 836.886779785156
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Confidence Intervals for Nonparametric Regression Functions with Missing Data.
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Qin%2C+Yongsong%22">Qin, Yongsong</searchLink><br /><searchLink fieldCode="AR" term="%22Qiu%2C+Tao%22">Qiu, Tao</searchLink><br /><searchLink fieldCode="AR" term="%22Lei%2C+Qingzhu%22">Lei, Qingzhu</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Communications in Statistics: Theory & Methods; Oct2014, Vol. 43 Issue 19, p4123-4142, 20p
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22CONFIDENCE+intervals%22">CONFIDENCE intervals</searchLink><br /><searchLink fieldCode="DE" term="%22NONPARAMETRIC+estimation%22">NONPARAMETRIC estimation</searchLink><br /><searchLink fieldCode="DE" term="%22REGRESSION+analysis%22">REGRESSION analysis</searchLink><br /><searchLink fieldCode="DE" term="%22MATHEMATICAL+functions%22">MATHEMATICAL functions</searchLink><br /><searchLink fieldCode="DE" term="%22MISSING+data+%28Statistics%29%22">MISSING data (Statistics)</searchLink><br /><searchLink fieldCode="DE" term="%22EMPIRICAL+research%22">EMPIRICAL research</searchLink>
– Name: Abstract
  Label: Abstract
  Group: Ab
  Data: Suppose that we have a nonparametric regression modelY=m(X) + ε withX∈Rp, whereXis a random design variable and is observed completely, andYis the response variable and someY-values are missing at random. Based on the “complete” data sets forYafter nonaprametric regression imputation and inverse probability weighted imputation, two estimators of the regression functionm(x0) for fixedx0∈Rpare proposed. Asymptotic normality of two estimators is established, which is used to construct normal approximation-based confidence intervals form(x0). We also construct an empirical likelihood (EL) statistic form(x0) with limiting distribution of χ21, which is used to construct an EL confidence interval form(x0). [ABSTRACT FROM PUBLISHER]
– Name: Abstract
  Label:
  Group: Ab
  Data: <i>Copyright of Communications in Statistics: Theory & Methods is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract.</i> (Copyright applies to all Abstracts.)
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edb&AN=98605269
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1080/03610926.2012.705210
    Languages:
      – Code: eng
        Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 20
        StartPage: 4123
    Subjects:
      – SubjectFull: CONFIDENCE intervals
        Type: general
      – SubjectFull: NONPARAMETRIC estimation
        Type: general
      – SubjectFull: REGRESSION analysis
        Type: general
      – SubjectFull: MATHEMATICAL functions
        Type: general
      – SubjectFull: MISSING data (Statistics)
        Type: general
      – SubjectFull: EMPIRICAL research
        Type: general
    Titles:
      – TitleFull: Confidence Intervals for Nonparametric Regression Functions with Missing Data.
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Qin, Yongsong
      – PersonEntity:
          Name:
            NameFull: Qiu, Tao
      – PersonEntity:
          Name:
            NameFull: Lei, Qingzhu
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 10
              Text: Oct2014
              Type: published
              Y: 2014
          Identifiers:
            – Type: issn-print
              Value: 03610926
          Numbering:
            – Type: volume
              Value: 43
            – Type: issue
              Value: 19
          Titles:
            – TitleFull: Communications in Statistics: Theory & Methods
              Type: main
ResultId 1