Bibliographic Details
| Title: |
Complex Response of a Rocking Block to a Full-Cycle Pulse. |
| Source: |
Journal of Engineering Mechanics; Jun2014, Vol. 140 Issue 6, p-1, 15p |
| Subject Terms: |
SEISMIC response, SEISMIC waves, BIFURCATION theory, ROCK mechanics, DYNAMICAL systems |
| Abstract: |
The rocking response of rigid, free-standing bodies to earthquake pulses is revisited. A two-dimensional rectangular block resting on a rigid base is considered, subjected to an idealized ground acceleration pulse composed of two constant half-cycles of equal amplitude, equal duration, and opposite sign. Closed-form expressions are obtained for the dynamic response, whereas rigorous overturning criteria are established for conditions with and without impact. The solutions are expressed in terms of three dimensionless parameters, namely, pulse duration, uplift strength, and restitution coefficient. Despite the apparent simplicity of the problem, the response can exhibit complex-even counterintuitive-patterns, a trait attributed to the possibility of overturning in two distinct modes (forward and backward), the nonlinear nature of the impact, the real-valued (positive) pole of the differential operator, and the presence of multiple immobility points in a particular response branch. The bifurcation behavior associated with the existence of two overturning modes is highlighted. Comparisons against idealized pulses of other shapes and actual near-fault recorded ground motions are presented and commented. [ABSTRACT FROM AUTHOR] |
|
Copyright of Journal of Engineering Mechanics is the property of American Society of Civil Engineers and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Database: |
Complementary Index |