Podrobná bibliografie
| Název: |
Fraud and financial crime detection model using malware forensics. |
| Autoři: |
Kim, Ae, Kim, Seongkon, Park, Won, Lee, Dong |
| Zdroj: |
Multimedia Tools & Applications; Jan2014, Vol. 68 Issue 2, p479-496, 18p |
| Témata: |
MALWARE, COMPUTER crimes, CRIMINAL investigation, FRAUD, CRIMINAL liability, COMPUTER security, TRANSACTION systems (Computer systems) |
| Abstrakt: |
Recently various electronic financial services are provided by development of electronic devices and communication technology. By diversified electronic financial services and channels, users of none face-to-face electronic financial transaction services continuously increase. At the same time, under financial security environment, leakage threats of inside information and security threats against financial transaction users steadily increase. Accordingly, in this paper, based on framework standards of financial transaction detection and response, digital forensics techniques that has been used to analyze system intrusion incidents traditionally is used to detect anomaly transactions that may occur in the user terminal environment during electronic financial transactions. Particularly, for the method to analyze user terminals, automated malware forensics techniques that is used as supporting tool for malware code detection and analysis is used, and for the method to detect anomaly prior behaviors and transaction patterns of users, moving average based on the statistical basis is applied. In addition, the risk point calculation model is proposed by scoring anomaly transaction cases in the detection step by items. This model logs calculated risk point results as well as maintains incident accountability, which can be utilized as basic data for establishing security incident response and security policies. [ABSTRACT FROM AUTHOR] |
|
Copyright of Multimedia Tools & Applications is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Databáze: |
Complementary Index |