Weight Functions and Generalized Hamming Weights of Linear Codes.

Uložené v:
Podrobná bibliografia
Názov: Weight Functions and Generalized Hamming Weights of Linear Codes.
Autori: D. Yu. Nogin
Zdroj: Problems of Information Transmission; Apr2005, Vol. 41 Issue 2, p91-104, 14p
Abstrakt: Abstract We prove that the weight function wt:  $$\mathbb{F}_q^k \to \mathbb{Z}$$ on a set of messages uniquely determines a linear code of dimension k up to equivalence. We propose a natural way to extend the rth generalized Hamming weight, that is, a function on r-subspaces of a code C, to a function on  $$\mathbb{F}_q^{\left( {_r^k } \right)} \cong \Lambda ^r C$$ . Using this, we show that, for each linear code C and any integer r ≰ k = dim C, a linear code exists whose weight distribution corresponds to a part of the generalized weight spectrum of C, from the rth weights to the kth. In particular, the minimum distance of this code is proportional to the rth generalized weight of C. [ABSTRACT FROM AUTHOR]
Copyright of Problems of Information Transmission is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáza: Complementary Index
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://resolver.ebscohost.com/openurl?sid=EBSCO:edb&genre=article&issn=00329460&ISBN=&volume=41&issue=2&date=20050401&spage=91&pages=91-104&title=Problems of Information Transmission&atitle=Weight%20Functions%20and%20Generalized%20Hamming%20Weights%20of%20Linear%20Codes.&aulast=D.%20Yu.%20%20Nogin&id=DOI:
    Name: Full Text Finder
    Category: fullText
    Text: Full Text Finder
    Icon: https://imageserver.ebscohost.com/branding/images/FTF.gif
    MouseOverText: Full Text Finder
  – Url: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=EBSCO&SrcAuth=EBSCO&DestApp=WOS&ServiceName=TransferToWoS&DestLinkType=GeneralSearchSummary&Func=Links&author=Nogin%20DY
    Name: ISI
    Category: fullText
    Text: Nájsť tento článok vo Web of Science
    Icon: https://imagesrvr.epnet.com/ls/20docs.gif
    MouseOverText: Nájsť tento článok vo Web of Science
Header DbId: edb
DbLabel: Complementary Index
An: 20137759
RelevancyScore: 832
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 832.338012695313
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Weight Functions and Generalized Hamming Weights of Linear Codes.
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22D%2E+Yu%2E++Nogin%22">D. Yu. Nogin</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Problems of Information Transmission; Apr2005, Vol. 41 Issue 2, p91-104, 14p
– Name: Abstract
  Label: Abstract
  Group: Ab
  Data: Abstract We prove that the weight function wt: <img src="/fulltext-image.asp?format=htmlnonpaginated&src=T674768PQ0804441_html\11122_2005_Article_14_TeX2GIFIE1.gif" border="0" alt=" $$\mathbb{F}_q^k \to \mathbb{Z}$$ " /> on a set of messages uniquely determines a linear code of dimension k up to equivalence. We propose a natural way to extend the rth generalized Hamming weight, that is, a function on r-subspaces of a code C, to a function on <img src="/fulltext-image.asp?format=htmlnonpaginated&src=T674768PQ0804441_html\11122_2005_Article_14_TeX2GIFIE2.gif" border="0" alt=" $$\mathbb{F}_q^{\left( {_r^k } \right)} \cong \Lambda ^r C$$ " />. Using this, we show that, for each linear code C and any integer r ≰ k = dim C, a linear code exists whose weight distribution corresponds to a part of the generalized weight spectrum of C, from the rth weights to the kth. In particular, the minimum distance of this code is proportional to the rth generalized weight of C. [ABSTRACT FROM AUTHOR]
– Name: Abstract
  Label:
  Group: Ab
  Data: <i>Copyright of Problems of Information Transmission is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract.</i> (Copyright applies to all Abstracts.)
PLink https://erproxy.cvtisr.sk/sfx/access?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edb&AN=20137759
RecordInfo BibRecord:
  BibEntity:
    Languages:
      – Code: eng
        Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 14
        StartPage: 91
    Titles:
      – TitleFull: Weight Functions and Generalized Hamming Weights of Linear Codes.
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: D. Yu. Nogin
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 04
              Text: Apr2005
              Type: published
              Y: 2005
          Identifiers:
            – Type: issn-print
              Value: 00329460
          Numbering:
            – Type: volume
              Value: 41
            – Type: issue
              Value: 2
          Titles:
            – TitleFull: Problems of Information Transmission
              Type: main
ResultId 1