Zone-AGF: An O-RAN-Based Local Breakout and Handover Mechanism for Non-5G Capable Devices in Private 5G Networks.
Saved in:
| Title: | Zone-AGF: An O-RAN-Based Local Breakout and Handover Mechanism for Non-5G Capable Devices in Private 5G Networks. |
|---|---|
| Authors: | Hitayezu, Antoine, Wang, Jui-Tang, Dini, Saffana Zyan |
| Source: | Electronics (2079-9292); Dec2025, Vol. 14 Issue 24, p4794, 29p |
| Abstract: | The growing demand for ultra-reliable and low-latency communication (URLLC) in private 5G environments, such as smart campuses and industrial networks, has highlighted the limitations of conventional Wireline access gateway function (W-AGF) architectures that depend heavily on centralized 5G core (5GC) processing. This paper introduces a novel Centralized Unit (CU)-based Zone-Access Gateway Function (Z-AGF) architecture designed to enhance handover performance and enable Local Breakout (LBO) within Non-Public Networks (NPNs) for non-5G capable (N5GC) devices. The proposed design integrates W-AGF functionalities with the Open Radio Access Network (O-RAN) framework, leveraging the F1 Application Protocol (F1AP) as the primary interface between Z-AGF and CU. By performing local breakout (LBO) locally at the Z-AGF, latency-sensitive traffic is processed closer to the edge, reducing the backhaul load and improving end-to-end latency, throughput, and jitter performance. The experimental results demonstrate that Z-AGF achieves up to 45.6% latency reduction, 69% packet loss improvement, 85.6% reduction of round-trip time (RTT) for local communications under LBO, effective local offloading with quantified throughput compared to conventional W-AGF implementations. This study provides a scalable and interoperable approach for integrating wireline and wireless domains, supporting low-latency, highly reliable services within the O-RAN ecosystem and accelerating the adoption of localized next-generation 5G services. [ABSTRACT FROM AUTHOR] |
| Copyright of Electronics (2079-9292) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) | |
| Database: | Complementary Index |
Be the first to leave a comment!
Full Text Finder
Nájsť tento článok vo Web of Science